Заземление нейтрали трансформатора 110 кв
Режимы работы нейтралей трансформаторов системы электроснабжения
Трансформаторы имеют нейтрали, режим работы или способ рабочего заземления которых обусловлен:
- требованиями техники безопасности и охраны труда персонала,
- допустимыми токами замыкания на землю,
- перенапряжениями, возникающими при замыканиях на землю, а также рабочим напряжением неповрежденных фаз электроустановки по отношению к земле, определяющих уровень изоляции электротехнических устройств,
- необходимостью обеспечения надежной работы релейной защиты от замыкания на землю,
- возможностью применения простейших схем электрических сетей.
При однофазном замыкании на землю нарушается симметрия электрической системы: изменяются напряжения фаз относительно земли, появляются токи замыкания на землю, возникают перенапряжения в сетях. Степень изменения симметрии зависит от режима нейтрали .
Режим нейтрали оказывает существенное влияние на режимы работы электроприемников, схемные решения системы электроснабжения, параметры выбираемого оборудования.
Нейтраль сети — это совокупность соединенных между собой нейтральных точек и проводников, которая может быть изолирована от сети либо соединена с землей через малые или большие сопротивления.
Используются следующие режимы нейтрали:
эффективно заземленная нейтраль.
Выбор режима нейтрали в электрических сетях определяется бесперебойностью электроснабжения потребителей, надёжностью работы, безопасностью обслуживающего персонала и экономичностью электроустановок.
Нейтрали трансформаторов трёхфазных электрических установок, к обмоткам которых подключены электрические сети, могут быть заземлены непосредственно, либо через индуктивные или активные сопротивления, либо изолированы от земли.
Если нейтраль обмотки трансформатора присоединена к заземляющему устройству непосредственно или через малое сопротивление, то такая нейтраль называется глухозаземлённой , а сети, подсоединённые к ней, соответственно, — сетями с глухозаземлённой нейтралью .
Нейтраль, не соединённая с заземляющим устройством называется изолированной нейтралью .
Сети, нейтраль которых соединена с заземляющим устройством через реактор (индуктивное сопротивление), компенсирующий ёмкостной ток сети, называются сетями с резонанснозаземлённой либо компенсированной нейтралью .
Сети, нейтраль которых заземлена через резистор (активное сопротивление) называется сеть с резистивнозаземлённой нейтралью .
Электрическая сеть, напряжением выше 1 кВ, в которой коэффициент замыкания на землю не превышает 1,4 (коэффициент замыкания на землю – отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания ) называется сеть с эффективнозаземлённой нейтралью .
Электроустановки в зависимости от мер электробезопасности разделяются на 4 группы:
- электроустановки напряжением выше 1 кВ в сетях с эффективнозаземленной нейтралью (с большими токами замыкания на землю),
- электроустановки напряжением выше 1 кВ в сетях с изолированной нейтралью (с малыми токами замыкания на землю),
- электроустановки напряжением до 1 кВ с глухозаземленной нейтралью,
- электроустановки напряжением до 1 кВ с изолированной нейтралью.
Режимы нейтрали трехфазных систем
Напряжение, кВ | Режим нейтрали | Примечание |
0,23 | Глухозаземленная нейтраль | Требования техники безопасности. Заземляются все корпуса электрооборудования |
0,4 | ||
0,69 | Изолированная нейтраль | Для повышения надежности электроснабжения |
3,3 | ||
6 | ||
10 | ||
20 | ||
35 | ||
110 | Эффективно заземленная нейтраль | Для снижения напряжения незамкнутых фаз относительно земли при замыкании одной фазы на землю и снижения расчетного напряжения изоляции |
220 | ||
330 | ||
500 | ||
750 | ||
1150 |
Системы с глухозаземленной нейтралью — это системы с большим током короткого замыкания на землю. При коротком замыкании место замыкания отключается автоматически. В системах 0,23 кВ и 0,4 кВ это отключение диктуется требованиями техники безопасности. Одновременно заземляются все корпуса оборудования.
Системы 110 и 220 кВ и выше выполняются с эффективно заземленной нейтралью . При коротком замыкании место замыкания также отключается автоматически. Здесь заземление нейтрали приводит к снижению расчетного напряжения изоляции. Оно равно фазному напряжению неповрежденных фаз относительно земли. Для ограничения величины токов короткого замыкания на землю заземляются не все нейтрали трансформаторов (эффективное заземление).
Режимы нейтрали трехфазных систем: а — заземленная нейтраль, б — изолированная нейтраль
Изолированной нейтралью называется нейтраль, не присоединенная к заземляющему устройству или присоединенная через аппараты, компенсирующие емкостный ток в сети, трансформаторы напряжения и другие аппараты, имеющие большое сопротивление.
Система с изолированной нейтралью применяется для повышения надежности электроснабжения. Характеризуется тем, что при замыкании одной фазы на землю возрастает напряжение фазных проводов относительно земли до линейного напряжения, и симметрия напряжений нарушается. Между линией и нейтралью протекает емкостной ток. Если он меньше 5А, то допускается продолжение работы до 2 ч для турбогенераторов мощностью до 150 МВт и для гидрогенераторов — до 50 МВт. Если установлено, что замыкание произошло не в обмотке генератора, а в сети, то допускается работа в течение 6 ч.
Сети от 1 до 10 кВ — это сети генераторного напряжения электрических станций и местные распределительные сети. При замыкании на землю одной фазы в такой системе напряжение неповрежденных фаз относительно земли возрастает до величины линейного напряжения. Поэтому изоляция должна быть рассчитана на это напряжение.
Основное преимущество режима изолированной нейтрали — способность подавать энергию электроприемникам и потребителям при однофазном замыкании на землю.
Недостатком этого режима являются трудности о обнаружении места замыкания на землю.
Повышенная надежность режима (т.е. возможность нормальной работы при однофазных замыканиях на землю, которые составляют значительную часть повреждений электрооборудования) изолированной нейтрали обуславливает обязательное его применение при напряжении выше 1 кВ до 35 кВ включительно, поскольку эти сети питают большие группы электроприемников и потребителей.
С напряжения 110 кВ и выше применение режима изолированной нейтрали становится экономически невыгодным, так как повышение напряжения относительно земли с фазного до линейного требует существенного усиления фазной изоляции. Применение режима изолированной нейтрали до 1 кВ допускается и оправданно при повышенных требованиях к электробезопасности.
Большая Энциклопедия Нефти и Газа
Разземление — нейтраль
Для сетей с номинальным напряжением до 110 кв, как правило, применяется заземление нейтралей силовых трансформаторов через компенсирующую катушку или разземление нейтрали . [31]
В союзных установках с большими токами замыкания на землю реакторы для ограииче-ния токов замыкания е применяются, и ограничение тока достигается разземлением нейтралей трансформаторов . [32]
В качестве средств ограничения токов КЗ используются токоограничивающие реакторы, трансформаторы и автотрансформаторы с расщепленной обмоткой НН, трансформаторы с повышенным напряжением КЗ, разземление нейтрали части трансформаторов , заземление нейтрали части трансформаторов через резисторы, устройства опережающего деления сети ( ОДС), вставки постоянного тока и токоограничивающие коммутационные аппараты. [33]
НН, различного рода токоограничивающих устройств, в том числе с нелинейными характеристиками, деление сети, стационарное ( СДС) и автоматическое ( АДС), разземление нейтралей части силовых трансформаторов , заземление нейтралей части трансформаторов через резисторы, реакторы или устройства с нелинейными характеристиками, замену автотрансформаторных связей сетей повышенного напряжения на трансформаторные связи, перевод части блоков электростанций на работу в сеть более высокого напряжения, замену части электрооборудования с неудовлетворительными техническими параметрами. [34]
Трансформаторы, имеющие автотрансформаторные связи между обмотками и общую нейтраль, а также обмотки силовых трансформаторов напряжением 110 кВ и выше, имеющих неполную изоляцию со стороны нулевых выводов, должны быть постоянно заземлены наглухо, так как в случае разземления нейтрали возможно возникновение перенапряжений, что приведет к повреждению трансформатора. [35]
Разземление нейтрали у части трансформаторов системы преследует цель уменьшить ток однофазного к. [37]
Ограничение токов однофазного КЗ в сетях напряжением ПО-220 кВ осуществляется путем частичного разземления или заземления части нейтралей трансформаторов через бетэловые резисторы. Разземление нейтрали трансформаторов обычно выполняется на понизительных подстанциях энергосистемы. [38]
При необходимости по режиму работы электрической сети разрешается разземлять нейтрали части трансформаторов ПО, 150, 220 кВ ( с изоляцией нейтралей соответственно на 35 и ПО кВ), установленных на подстанциях и частично на электростанциях, если при этом нейтрали трансформаторов защищены соответственно разрядниками типов РВМ-35 РВМ-20, РВС-60, РВС-110. Разземление нейтралей трансформаторов напряжением 330 кВ и выше не допускается. При включении или отключении разъединителем или отделителем трансформаторов ПО кВ с изоляцией нейтралей на 35 кВ ( испытательное напряжение 85 или 100 кВ) требуется предварительное заземление нейтралей этих трансформаторов. [39]
При прочих равных условиях коэффициент заземления растет при увеличении относительного числа трансформаторов, работающих с разземлением нейтрали. При разземлении нейтрали части установленных трансформаторов потенциал здоровой фазы находится в пределах 58 — 100 %, а нейтрали — 0 — 58 % линейного напряжения. [40]
Дальнейшее увеличение сопротивления в нейтрали сначала ухудшает устойчивость, а затем при больших сопротивлениях, равноценных разземлению нейтрали , вновь улучшает ее, приближаясь к случаю, когда нейтраль трансформатора разземлена. [42]
Таким образом, эта схема не требует отстройки защиты от токов нулевой последовательности при коротких замыканиях на землю в питающей сети, что необходимо для схемы полной звезды в случае заземленной нейтрали защищаемого трансформатора. Однако в случае разземления нейтрали , что довольно часто делается в условиях эксплуатации, схема полной звезды будет иметь в УЗ раз большую чувствительность к коротким замыканиям на землю в трансформаторе со стороны питания. Это учитывается при окончательном выборе схемы соединения. [43]
Важно правильно выбрать разрядники, так как число раззем-ленных нейтралей трансформаторов непрерывно растет с ростом энергосистем и внедрением автотрансформаторов. Поэтому ясно, что разземление нейтрали трансформаторов в первую очередь осуществляют у тех трансформаторов, которые имеют полную изоляцию нейтрали. [45]
5. Защита разземленной нейтрали трансформаторов 110-220 кВ.
Изоляция нейтрали силовых трансформаторов имеет пониженные по сравнению с фазными выводами испытательные напряжения. Поэтому при грозовых и коммутационных перенапряжениях на разземленной нейтрали трансформаторов может появляться напряжение превышающее её уровень изоляции, что приводит к необходимости установки защитных аппаратов.
5.1. Основные положения, которые необходимо учитывать при выборе режима заземления нейтрали трансформаторов.
При проектировании и эксплуатации электрических сетей 110 — 220 кВ с частичным разземлением нейтрали исходят из следующих основных положений:
учитывается отключающая способность выключателей. Режим заземления выбирается таким, чтобы ток однофазного к.з. не превышал номинального тока отключения выключателей.
размещение в сети трансформаторов с разземленной нейтралью должно производиться таким образом, чтобы при оперативных и аварийных коммутациях обеспечить эффективное заземление нейтрали всей сети.
Принимаются все возможные меры для предотвращения выделения участков сети, работающих с неэффективно заземленной или изолированной нейтралью.
в первую очередь разземляются нейтрали трансформаторов, имеющие полную изоляцию.
для повышения чувствительности токовой защиты линии и облегчения её расчета обеспечивается, по возможности, постоянство значений сопротивлений нулевой последовательности станций и подстанций в различных режимах их работы. С этой целью на станциях и узловых подстанциях с двумя и более трансформаторами применяется разземление нейтралей части трансформаторов.
для обеспечения чувствительности токовой защиты нулевой последовательности линий с ответвлениями трансформаторов подстанций на ответвлениях должны иметь, по возможности, наименьшее число заземленных нейтралей. С этой целью, как правило, не заземляются нейтрали трансформаторов без питания со стороны пониженного напряжения. Нейтрали трансформаторов, имеющих питание со стороны пониженного напряжения, заземляются в количестве, достаточном для предотвращения при различных аварийных отключениях возникновения участков сети с изолированной или неэффективно заземленной нейтралью.
для выполнения требований предотвращения недопустимого режима работы в сети с изолированной нейтралью при наличии на станции или подстанции трансформаторов как с заземленной, так и с изолированной нейтралью с питанием со стороны пониженных напряжений предусматривается релейная защита, обеспечивающая отключение трансформатора с изолированной нейтралью или её автоматическое заземление (с помощью короткозамыкателя) до отключения трансформаторов с заземленной нейтралью, работающих на те же шины или участок сети.
В разземленной нейтрали трансформаторов 110 кВ устанавливается оборудование (разъединитель, трансформатор тока) класса 35 кВ с длительно допустимым рабочим напряжением 40,5 кВ. Для изоляции нейтрали трансформатора длительно допустимое рабочее напряжение не нормируется. Однако, поскольку одноминутное испытательное напряжение изоляции нейтрали (100 кВ) несколько выше, чем для оборудования 35 кВ (85 кВ), то, следовательно, длительно допустимое напряжение изоляции нейтрали не должно быть ниже 40,5 кВ.
5.2. Защита разземленной нейтрали трансформаторов 110-220 кВ.
Параметры ОПН для защиты нейтрали трансформаторов 110 кВ, 220 кВ выбираются по трем основным направлениям:
по выдерживанию повышений напряжений промышленной частоты;
по воздействию коммутационных перенапряжений;
по воздействию грозовых перенапряжений.
Напряжение частоты 50 Гц на нейтрали трансформатора появляется при:
разновременности в действии фаз выключателя. Это время составляет обычно доли периода промышленной частоты.
однофазном замыкании на землю в сети и равно
, где
Uф – наибольшее рабочее фазное напряжение сети,
— импедансы прямой, обратной и нулевой последовательности относительно места к.з.
Длительность режима определяется временем действия релейной защиты
при двухфазном к.з.
,
поскольку для сети =
,то
= 0,6 Uф
Длительность режима определяется временем действия релейной защиты
неполнофазной коммутации (только одна фаза трансформаторного выключателя оказалась включенной). U=Uф. Время ликвидации неполнофазного режима обычно не превышает 20 мин.
Возможные в эксплуатации повышения напряжения 50 Гц на нейтрали трансформатора и их длительность суммированы в таблице 5.2.1.
Объявления
Если вы интересуетесь релейной защитой и реле, то подписывайтесь на мой канал
Режим нейтрали трансформаторов 110 кВ (Страница 1 из 3)
Чтобы отправить ответ, вы должны войти или зарегистрироваться
Сообщений с 1 по 20 из 56
1 Тема от RUSSSYA 2014-06-27 08:14:03 (2014-06-27 13:13:19 отредактировано RUSSSYA)
- RUSSSYA
- Пользователь
- Неактивен
- Зарегистрирован: 2011-01-25
- Сообщений: 39
- Репутация : [ 0 | 0 ]
Тема: Режим нейтрали трансформаторов 110 кВ
Здравствуйте, заранее извиняюсь, что вопрос далек от тематики форума.
Дело в том, что задали мне недавно вопрос про режим нейтрали обмоток трансформаторов 110 кВ. А точнее почему нейтрали рабочих трансформаторов разземлены, а резервного глухо заземлен, как показано ниже на рисунке. Как назло все первичники в отпусках, которые бы смогли ответить, а я не успел выйти вовремя))) Перерыл все схемы наши везде выполнено так как на нижеприведенной схеме.
Наша типичная схема:
http://rzia.ru/extensions/hcs_image_uploader/uploads/users/1000/201/tmp/thumb/p18recrvk7maq1rmk1aku1ejli761.png
1Т, 2Т — рабочие трансформаторы.
10ВA, 10BB, 20BA, 20BB — соответствующие секции этих трансформаторов, на схеме не показано для упрощения, но они питают либо линии питания секции 6 кВ, либо трансформаторы на 6/0,4.
OBTO1- резервный трансформатор, питает магистрали резервного питания.
И так везде нейтраль резервного трансформатора наглухо.
Просмотрел ПУЭ и ПТЭ толком ничего не нашел. Кроме
5.3.21. Нейтрали обмоток 110 кВ и выше автотрансформаторов и реакторов, а также трансформаторов 330 кВ и выше должныработать в режиме глухого заземления.
Допускается заземление нейтрали трансформаторов и автотрансформаторов через специальные реакторы.
Трансформаторы 110 и 220 кВ с испытательнымнапряжением нейтрали соответственно 100 и 200 кВ могут работать с разземленнойнейтралью при условии ее защиты разрядником. При обосновании расчетамидопускается работа с разземленной нейтралью трансформаторов 110 кВ с испытательным напряжением нейтрали 85 кВ, защищенной разрядником.
Меня это только больше запутало.
Так вот кто нибудь сталкивался с таким вопросом. Либо знает где можно еще почитать?
Зачем и как делают заземление трансформаторов
От производителей электроэнергии передается ток высокого напряжения. Чтобы им могли пользоваться потребители на бытовом уровне, применяют понижающие трансформаторы. Согласно ПУЭ для них необходимо применять защитное заземление. Предусмотрен внешний и внутренний контур заземления. Устанавливают также защиту от ударов молнии.
Принципы устройства
Трансформатор преобразует (трансформирует) параметры переменного электрического тока. Происходит это благодаря явлению электромагнитной индукции. Основные детали прибора – катушки (обмотки) с проводами и ферромагнитный сердечник.
На одну катушку ток поступает, и она называется первичной. Вторичных катушек может быть 1, 2 и больше. С них снимается ток с уже измененными характеристиками.
У повышающего трансформатора число витков на вторичной обмотке больше, чем на первичной. В прямой связи увеличивается индуцированное напряжение с одновременным понижением силы тока.
Устройство понижающих трансформаторов другое. Они сделаны с точностью наоборот. Число витков в первичной обмотке у них больше, чем на вторичной обмотке, поэтому индуцированное напряжение снижается.
На большие расстояния выгоднее передавать электричество высокого напряжения и низкой силы тока, поскольку потери энергии на выделения тепла наименьшие.
Так и поступают. А трансформаторы впоследствии преобразуют ток до необходимых параметров.
Способ соединения обмоток трансформатора может быть выбран «треугольник», «звезда» или «зигзаг». В случае «треугольника» обмотки соединены последовательно, образуя замкнутый контур. Способ «звезда» предполагает соединение концов фазных обмоток в одну точку. Ее называют нулевой (нейтральной) точкой.
В случае «зигзага» каждая фазная обмотка состоит из 2-х частей на разных стержнях. Соединение 2-х частей происходит навстречу друг другу. Образовавшиеся три вывода соединяют, как «звезду».
Для трансформаторов высокого напряжения применяют соединение «звезда». Заземляется нулевая точка или конец вторичной обмотки. При объединении в «звезду» заземляют фазный провод.
Применение
Для преобразования тока, который передается по электрическим сетям, применяют силовые трансформаторы. Такие устройства способны работать с большими мощностями. Они преобразуют напряжение на линиях с 35…750 кВ в напряжение 6 и 10 кВ и далее в 400 В. После этого электроэнергией могут пользоваться потребители на бытовом уровне.
Трансформаторы тока используют, чтобы снижать ток до требуемой величины. Их применяют в схемах бесконтактного управления, чтобы обезопасить людей и технику от поражения током.
Трансформаторы тока применяют также в измерительных и защитных устройствах, схемах сигнализации и в других приборах.
Особенность трансформатора тока в том, что его вторичная обмотка работает в режиме, близком к короткому замыканию. Если по какой-то причине происходит разрыв цепи на вторичной обмотке, то напряжение на ней повышается до значительных величин.
Скачек напряжения может вызвать поломку оборудования, включенного в сеть. Поэтому должно присутствовать защитное заземление.
Существуют также трансформаторы напряжения, импульсные трансформаторы, автотрансформаторы, сварочные и другие. Для каждого из них существуют своя схема и особенности подключения заземления. Чтобы правильно его выполнить, необходимо изучить техническую документацию к оборудованию.
Зачем заземлять
Заземление нейтрали трансформатора необходимо для создания стабильной работы электроустановки и безопасности людей, которые могут находиться на подстанции.
Рабочее заземление на трансформаторе является частью защитного. Это значит, что заземление, предназначенное для стабильной работы устройства, также защищает от поражения током.
Правила устройства электроустановок требуют, чтобы все силовые трансформаторы были заземлены.
В трансформаторах напряжения заземляется только трансформатор. Согласно правилам устройства электроустановок у трансформатора напряжения заземление вторичной обмотки происходит путем соединения общей точки или одного из концов обмотки с заземляющим проводником.
В трансформаторах тока заземляются вторичные обмотки. Для подключения проводников предусмотрены специальные зажимы. Обмотки нескольких установок можно соединять одним проводником и подключать к одной шине.
В электротехнике выделяют понятие сети с эффективно заземленной нейтралью. Оно применимо для силового трансформатора, у которого заземлено большинство нейтралей обмоток (глухое заземление нейтрали).
Если произойдет однофазное замыкание, то напряжение на поврежденных фазах не должно быть выше 1,4 напряжения на рабочих фазах в нормальных условиях.
Дугогасящие реакторы
В сетях, рассчитанных на 110 кВ и выше, предусмотрена защита с глухозаземленной нейтралью. Если сеть рассчитана на 35 кВ и ниже, то применяется заземление с изолированной нейтралью.
Преимущество изолированной нейтрали в том, что если произойдет замыкание фазы на земли, то это не приведет к короткому замыканию.
На трансформаторах с системой изолированной нейтрали устанавливают дугогасящие реакторы. Они компенсируют емкостные токи, возникающие при замыкании на землю.
Дело в том, что вдоль линии электропередачи накапливается электрический заряд (емкостное электричество). И как только происходит разрыв или иное повреждение изоляции, при контакте с землей возникает ток.
Если он достигает 30 А, образуется разрядная дуга. В результате кабель нагревается, начинает разрушаться изоляция и вместе с ней проводник.
Такое явление приводит к двухфазному и трехфазному замыканию. Срабатывает защита, и трансформатор полностью отключается. Обесточенными остаются сотни и тысячи потребителей электроэнергии.
Чтобы этого не произошло, устанавливают дугогасящие реакторы. Нейтраль заземляют через них. Во время однофазного замыкания на землю возрастает индуктивность дугогасящего реактора. Индуктивная проводимость компенсирует емкостную, и электрическая дуга не возникает.
Через дугогасящие реакторы заземляют нейтраль первичной обмотки одного из трансформаторов сети, в которой соединение обмоток происходит по типу «звезда-треугольник».
Если произошло замыкание на землю, то благодаря такой системе заземления, трансформатор сможет работать на протяжении еще 2-х часов, пока неполадки не будут устранены.
Создание внешнего контура
Чтобы сделать внешний контур заземления трансформатора, применяют вертикальные электроды, соединенные горизонтальными перемычками. Перемычки выполняют из листовой стали толщиной 4 мм и шириной 40 мм. Электроды втыкают в грунт по периметру трансформатора.
Проверяют удельное сопротивление грунта. Оно должно составлять максимум 100 Ом*м. Исходя из этого, требуется создать контур сопротивлением максимум 4 Ом.
Если взять круг диаметром 16 м, с условным трансформатором посередине, то для создания заземляющего контура потребуется минимум восемь электродов длиной по 5 м каждый.
Их размещают на расстоянии приблизительно 1 м от фундамента трансформаторной станции. Чем ближе стержни будут располагаться к стене, тем лучше. Горизонтальные полоски-соединения укладывают на ребро на глубину 0,5-0,7 м.
Такое требование к расположению связано с вопросами безопасности. Заземлитель не должен быть поврежден при проведении каких-либо ремонтных и строительных работ.
Защита от молний
Чтобы выполнить молниезащиты трансформаторной подстанции с металлической крышей, необходимо соединить крышу с внешним контуром заземления.
Соединение происходит в двух противоположных точках. То есть в одной точке кровля соединяется с внешним контуром, и со стороны, расположенной напротив, также происходит соединение кровли с контуром. Соединительным проводником становится проволока толщиной 8 мм.
Если кровля не металлическая, то на ней наверху создают специальный молниеприемник.
Создание внутреннего контура
Трансформаторная подстанция разделена на 3 помещения. Отдельно делают помещения для высокого и низкого напряжения – это помещения распределительных устройств (для входа и выхода). И отдельно предусмотрена трансформаторная камера, непосредственно для трансформатора.
В каждом отделении должна быть проложена заземляющая полоса. Ее прикрепляют к стенам на высоте 0,4…0,6 м, чтобы заземлить все части из металла, не предназначенные для проведения тока. Для крепления применяют дюбеля или специальные держатели круглых и плоских заземляющих проводников.
К заземляющей полосе подключают швеллер, предназначенный для установки трансформатора. Он размещен в стяжке пола. Подсоединяют и другие детали (шинный мост, металлические элементы барьера, крепежные детали, место присоединения переносного заземления). К системе заземления подключают все опорные конструкции из металла и стальные каркасы.
Для разборных соединений применяют болты, в остальных случаях элементы сваривают между собой. Для закрепления переносного заземления используют гайку с ушками «барашек».
Перемычки делают из гибкого медного провода ПВ3. Однако изоляционную оболочку с такого провода надо снять, чтобы можно было следить за целостностью жил.
Заделку в стены осуществляют посредством вставки гильз и заполнением свободного пространства негорючим материалом. Полосу окрашивают в желтый цвет с зелеными полосами. Такую окраску имеет защитный нулевой провод.
Нулевую шину подключают к заземляющему контуру. Корпус трансформатора соединяют с контуром перемычками.
При осмотре трансформатора на вход ставят оградительный барьер и навешивают табличку «Осторожно! Высокое напряжение!».
Режимы работы нейтралей в электроустановках.
Нейтралями электроустановок называют общие точки трехфазных обмоток генераторов или трансформаторов, соединенных в звезду.
В зависимости от режима нейтрали электрические сети разделяют на четыре группы:
- сети с незаземленными (изолированными) нейтралями;
- сети с резонансно-заземленными (компенсированными) нейтралями;
- сети с эффективно заземленными нейтралями;
- сети с глухозаземленными нейтралями.
Согласно требованиям Правил устройства электроустановок (ПУЭ, гл. 1.2).
Сети с номинальным напряжением до 1 кВ, питающиеся от понижающих трансформаторов, присоединенных к сетям с Uном > 1 кВ, выполняются с глухим заземлением нейтрали.
Сети с Uном до 1 кВ, питающиеся от автономного источника или разделительного трансформатора (по условию обеспечения максимальной электробезопасности при замыканиях на землю), выполняются с незаземленной нейтралью.
Сети с Uном = 110 кВ и выше выполняются с эффективным заземлением нейтрали (нейтраль заземляется непосредственно или через небольшое сопротивление).
Сети 3 — 35 кВ, выполненные кабелями, при любых токах замыкания на землю выполняются с заземлением нейтрали через резистор.
Сети 3—35 кВ, имеющие воздушные линии, при токе замыкания не более 30 А выполняются с заземлением нейтрали через резистор.
Компенсация емкостного тока на землю необходима при значениях этого тока в нормальных условиях:
- в сетях 3 — 20 кВ с железобетонными и металлическими опорами ВЛ и во всех сетях 35 кВ — более 10 А;
- в сетях, не имеющих железобетонных или металлических опор ВЛ:
при напряжении 3 — 6 кВ — более 30 А;
при 10 кВ — более 20 А;
при 15 — 20 кВ — более 15 А; - в схемах 6 — 20 кВ блоков генератор — трансформатор — более 5А
При токах замыкания на землю более 50 А рекомендуется установка не менее двух заземляющих дугогасящих реакторов.
Заземлитель нейтрали трансформатора – ЗОН
Один из элементов, используемых для заземления трансформаторов. ЗОН – эта аббревиатура расшифровывается как заземлитель однополюсный для наружных установок. Рассмотрим особенности и порядок применения данного устройства.
- Конструкция
- Принцип работы
- Назначение
- На какие трансформаторы устанавливают ЗОН
- Классификация
- Технические характеристики
- Условия эксплуатации заземлителей
Конструкция
Конструкция указанного устройства включает следующие составные элементы:
- основание,
- изоляционную колонку,
- неподвижный контакт,
- нож.
Для изготовления заземляющего ножа использована алюминиевая труба, соединяемая с валом посредством пластины.
Принцип работы
Принцип действия достаточно прост: при срабатывании разъёмный контакт на конце ножа соединяется со стационарным. Плотность контакта достигается установленной пружиной.
Включение и выключение производится механизированным приводом.
Назначение
Назначение ЗОН состоит в обеспечении заземления нейтралей силовых агрегатов, чтобы предотвратить замыкание на землю. Их применение позволяет предохранить работников от поражения электрическим током, а оборудование – от выхода из строя.
Система заземления
На какие трансформаторы устанавливают ЗОН
Указанные устройства монтируются на силовых трансформаторах, работающих в условиях открытого воздуха и внутри помещения, с напряжением до 110 кВ. В зависимости от разновидности, этот элемент может устанавливаться на оборудовании, предусматривающем наличие дополнительного трансформатора от замыкания на землю или лишённого данной защиты.
Классификация
ЗОН рассчитаны на напряжение 110 кВ, о чём указывает соответствующее числовое обозначение в маркировке. Эти устройства различаются по следующим критериям:
- предназначении для трансформаторов, имеющих или лишённых защиты от замыкания на землю (I или II исполнение),
- эксплуатации в условиях холодного или тёплого климата (буквы УХЛ или Т),
- размещению на улице или внутри помещения (соответственно цифры 1 или 3).
Также производятся модернизированные заземлители и с усиленной изоляцией (дополнительное обозначение соответственно М или Б).
Технические характеристики
Условия эксплуатации заземлителей
Заземлители должны эксплуатироваться в условиях, для которых они предназначены, в зависимости от используемого типа. Обслуживание и ремонт должны выполняться, согласно требованиям руководства по эксплуатации от изготовителя и нормативных документов.
Указанные работы необходимо выполнять с привлечением обученного и аттестованного персонала, соблюдением предусмотренной допускной системы.
Перед подключением оборудования к сети, необходимо выполнить следующие проверки:
- чистоты и целостности изоляторов;
- плотности затяжки резьбовых соединений;
- наличия смазки в соответствующих узлах;
- достаточности контактного давления.
Предварительно проверяется исправность работы устройства путём выполнения нескольких контрольных включений и отключений.
Техническое обслуживание предусматривает проведение регулярных осмотров его узлов, смазку трущихся деталей, контроль состояния контактов, очистку контактов и остальных элементов. Периодичность обслуживания определяется условиями и интенсивностью эксплуатации, но должна проводиться не реже одного раза в год.
От исправности и технического состояния ЗОН зависит безопасность обслуживающего персонала и целостность силового оборудования.