Провод заземления в шнуре электроприбора
Что такое заземление? Зачем оно нужно?
Что такое заземление и зачем оно нужно? В кругу специалистов вопрос покажется абсолютно тривиальным, однако для большинства среднестатистических граждан – это загадка то ли природы, то ли техники.
А тем временем в основе лежат не слишком уж и таинственные физические явления; зато правильно выполненное заземление способно спасти жизнь и здоровье человека при возникновении электроЧП.
Содержание:
Немного физики
Электрический ток протекает между точками, которые имеют разный электрический потенциал – в первом приближении, разную величину электрического заряда. Чтобы ток побежал, эти точки нужно соединить проводящей средой – к примеру, медной проволокой. Такая ситуация в электрической розетке: в одном из её гнёзд ±220 В, а в другом — ровным счётом 0 В. Когда эти гнёзда замыкаются через включённый в розетку прибор, между ними начинает течь ток, который, собственно, и вдыхает жизнь в холодильник, фен, утюг, компьютер и т.д.
Земля считается абсолютным нулём – её заряд всегда 0 В. Это ключевой факт. А тело человека проводит ток – иногда не хуже, чем медный кабель.
Риски
А теперь – нередкая ситуация в квартире.
Представим обычную стиральную машину в обычной среднестатистической квартире. Ничто в мире не совершенно, а потому в стиральном приборе может повредиться изоляция в одном из многочисленных внутренних проводов. С огромной вероятностью повреждённый проводок, несущий напряжение 220В, коснётся внутренних металлических частей, которые соединены с корпусом машины. Корпус прибора мгновенно окажется под напряжением. Если к этому корпусу прикоснётся человек, то он получит удар током.
Дело в том, что потенциал корпуса машины равен 220 В, а потенциал поверхности, на которой находится человек – 0 В. Вспомним, что тело человека — среда очень даже проводящая. Потому-то ток ринется с корпуса машины на пол через тело прикоснувшегося – вот и вся схема удара током.
Говоря по правде, что если человек будет в резиновой обуви на абсолютно сухом полу с абсолютно сухими руками, касание 220-ти вольт не особо повредит ему, поскольку сухость и соотвтетствующая обувь воспрепятствуют движеную тока – но часто ли могут быть выполнены все эти «абсолютно»?
Конечно, при наличии УЗО электроснабжение будет оперативно отключено… Однако это произойдет уже после удара током, последвствия которого могут быть плачевными.
Что самое интересное — напряжение может накопиться на корпусе прибора и не по причине неисправности, а из-за статического электричества. Это очень распространенная офисная проблема. Конечно, удар током не будет смертельным, однако вполне способен навредить здоровью. Уже начинаете понимать что такое заземление? Ну во всяком случае, мы продолжаем
Заземление как панацея
Казалось бы, явление неизбежно…, и ударят ли током наши любимые электроприборы, решать только им. Ан нет! Серьёзную помощь может оказать заземление, будь оно правильно смонтированным… и вообще будь оно. В описанной ситуации система заземления взяла бы удар током на себя, а человек ощутил бы лишь лёгкое покалывание.
«Физика и химия»
Заземление представляет собой процесс соединения металлических частей электроприборов с землёй. Выводятся «на землю» те части, которые могут прямым или косвенным образом грозить ударом током в случае, если по причине мини-ЧП окажутся под напряжением. Цель у заземления одна, но зато какая – обезопасить жизнь и здоровье человека.
Схема самодельного заземления могла бы выглядеть так. К корпусу электроприбора надёжно прикреплен провод, который выведен на улицу через дверь, окно и любой другой проём или отверстие. В землю вбит металлический штырь (уголок, прут, труба). К этому-то изделию и крепится провод, идущий от корпуса стиральной машины.
Почему такая схема работает? Начнём с того, что потенциал земли всегда 0 В, а на нашем корпусе может оказаться все 220 В – потому ток потечёт в землю, которая совершенно от этого не пострадает. Зато человек, коснувшийся корпуса, окажется в безопасности, поскольку ток выбирает для своего пути на землю лучший проводник и течёт через него. Если есть заземление, то оно и есть лучшим проводником электричества.
Идеал заземления
Но самое надёжное и грамотное заземление – то, которое предусмотрено в устройстве электрической проводки дома или квартиры. В таком случае в проводке помимо двух проводов (фаза и нуль) имеется и провод заземления – то есть кабель получается трехжильным. Третья жила и соединяется с землёй по всем правилам ПУЭ.
Заземляющая жила ветвится, подходя к каждой розетке. Розетка, в свою очередь, имеет дополнительный контакт – те самые «усики» по бокам гнезда, которые есть у многих современных розеток. Электроприбор, в котором предусмотрено заземление, имеет вилку с дополнительными боковыми контактами и трехпроводный шнур. Третий провод – заземляющий, он соединён с корпусом прибора и другими металлическими элементами, которые могут оказаться под напряжением и быть опасными для человека. Заземляющий провод выводится на боковые контакты вилки, которые, в свою очередь, через «усики» розетки уведут невесть откуда возникшее напряжение в землю. Однако следует иметь в виду, что розетка, имеющая заземляющие контакты, по-настоящему заземлена лишь в случае, если заземление есть и в схеме электропроводки.
К сожалению, в многоквартирных домах старой постройки подобное явление – большая редкость, как, впрочем, и в частных домах среднего возраста. Однако на первых этажах есть какая-никакая возможность восполнить электрический пробел и смонтировать заземление.
Заметим, что крайне желателен профессиональный монтаж заземления согласно правилам ПУЭ.
Нельзя вместо заземления использовать зануление – соединение заземляющего провода с нулевым. Также делают неграмотное заземление на трубы, радиаторы, а это запрещено так же строго, как и курение на бензоколонке.
Итак, учитывая увеличение количества электроприборов в наших жилищах, следует задуматься о профессиональном монтаже системы заземления в электропроводке жилища. Тем более, что некоторые современные приборы и вовсе строго запрещено эксплуатировать без профессионального заземления. Надеемся эта статья была полезна и вас больше не возникнет вопроса «Что такое заземление?»
Вам также может быть интересно:
Киевский офис
044-338-41-08
050-295-69-71
067-281-27-01
Наш адрес:
Киев, пр-т Освободителей, 3А, корп. 3, оф. 63
график работы:
Пн-Пт . 8:30 — 18:00
Сб, Вс . выходной
Присоединяйтесь к нам на Facebook
цены на кабельно-проводниковую продукцию:
Если у Вас возникли сложности на каком-либо этапе сотрудничества с нашей компанией, либо Вы хотели бы выразить свои пожелания, предложения по работе нашего предприятия, Вы можете отправить обращение на электронную почту отдела контроля УкрПровод.
Убедительная просьба в обращении оставлять подробную информацию:
- каким образом Вы обращались в нашу компанию: по электронной почте, в телефонном режиме, на странице в социальной сети;
- какие свои контактные данные Вы оставляли;
- какие именно сложности у Вас возникли при работе с нашей компанией;
- Ваша контактная информация для ответа по обращению.
Ваше мнение очень важно для нас, ведь мы постоянно работаем над улучшением качества обслуживания
«БЕЗОПАСНОСТЬ БЫТОВЫХ И АНАЛОГИЧНЫХ ЭЛЕКТРИЧЕСКИХ ПРИБОРОВ. ОБЩИЕ ТРЕБОВАНИЯ И МЕТОДЫ ИСПЫТАНИЙ. ГОСТ Р МЭК 335-1-94» (утв. Постановлением Госстандарта РФ от 02.03.94 N 43) (ред. от 01.10.2001)
27. Заземление
27.1 Доступные металлические части приборов классов 0I и I, которые могут оказаться под напряжением в случае повреждения изоляции, должны быть постоянно и надежно соединены с зажимом заземления внутри прибора или с контактом заземления приборного ввода.
Зажимы заземления и контакты заземления не должны быть соединены с зажимом для нейтрального провода.
Приборы классов 0, II и III не должны иметь устройств для заземления.
Соответствие требованию проверяют осмотром.
1 Если доступные металлические части экранированы от токоведущих частей металлическими частями, которые соединены с зажимом заземления или с контактом заземления, то считается, что они не могут оказаться под напряжением в случае повреждения изоляции.
2 Металлические части, расположенные за декоративной крышкой, которая не выдерживает испытание по разделу 21, считаются доступными металлическими частями.
27.2 Зажимы для присоединения внешних проводов, предназначенных для выравнивания потенциала, должны допускать присоединение проводов с номинальным поперечным сечением от 2,5 до 6 мм2 и не должны использоваться для обеспечения непрерывности заземления между различными частями прибора. Не должно быть возможности ослабления проводов без применения инструмента.
Зажимные устройства зажимов заземления должны быть в достаточной степени зафиксированы от случайного ослабления.
Соответствие требованию проверяют осмотром и испытанием вручную.
1 Провод заземления шнура питания не считается проводом, предназначенным для выравнивания потенциала.
2 Конструкция обычно используемых токоведущих зажимов, кроме некоторых зажимов колонкового типа, обеспечивает достаточную упругость для удовлетворения последнего требования. Для других конструкций могут быть необходимы дополнительные меры, такие как использование достаточно упругих частей, которые не могут быть сняты случайно.
(в ред. Изменения N 2)
27.3 Если съемные части введены вилкой в другие части прибора и имеют заземление, то заземление должно предшествовать соединению с токоведущими частями при установке таких частей на место и, напротив, при снятии таких частей рассоединение токоведущих соединений должно предшествовать разрыву цепи заземления.
Для приборов с шнурами питания расположение зажимов, а также длина проводов между креплением шнура и зажимами должны быть такими, чтобы в случае выскальзывания шнура из крепления шнура натяжение токонесущих проводов происходило раньше, чем натяжение провода заземления.
Соответствие требованию проверяют осмотром и испытанием вручную.
27.4 Все части зажима заземления, предназначенные для подсоединения внешних проводов, должны быть такими, чтобы не возникла опасность коррозии из-за контакта между этими частями и медью провода заземления или другим металлом, находящимся в контакте с этими частями.
Части, предназначенные для непрерывности заземления, кроме частей металлической рамы или кожуха, должны быть изготовлены из плакированного или неплакированного металла, обладающего соответствующей стойкостью к коррозии. Если такие части изготовлены из стали, они должны иметь значительную площадь с гальваническим покрытием, имеющим толщину не менее 5 мкм.
Части из плакированной или неплакированной стали, которые предназначены только для обеспечения или передачи контактного давления, должны обладать соответствующей стойкостью к коррозии.
Если корпус зажима заземления является частью рамы или кожуха, выполненных из алюминия или алюминиевых сплавов, то должны быть приняты меры для избежания коррозии из-за контакта между медью и алюминием или его сплавами.
Соответствие требованиям проверяют осмотром и измерением.
1 Части из меди или медных сплавов, содержащих не менее 58 % меди для частей, работающих в холодных условиях, и не менее 50 % меди — для других частей, и части из нержавеющей стали, содержащей не менее 13 % хрома, считают обладающими соответствующей стойкостью к коррозии.
2 Части, подвергнутые такой обработке, как, например, хромирование, обычно не считают защищенными соответствующим образом от коррозии, однако их допускается использовать для обеспечения или передачи контактного давления.
3 Примеры частей, обеспечивающих непрерывность заземления, и частей, которые предназначены только для обеспечения или передачи контактного давления, приведены на рисунке 13.
4 Соответствующая поверхность стальной пластины определяется, в частности, возможными дефектами при передаче тока. При определении этой поверхности следует принимать во внимание отношение толщины покрытия к форме части. В сомнительных случаях толщину покрытия измеряют по ГОСТ 9.302.
1 — токонесущая часть; 2 — часть, обеспечивающая или передающая контактное давление
Рисунок 13 — Примеры частей заземляющих зажимов
(в ред. Изменения N 2)
27.5 Соединение между зажимом заземления или контактом заземления и заземленными металлическими частями должно иметь небольшое сопротивление.
Соответствие требованию проверяют следующим испытанием.
Ток, равный 1,5 номинального тока прибора или 25 А, в зависимости от того, что больше, получаемый от источника постоянного или переменного тока, напряжение холостого хода которого не превышает 12 В, пропускают поочередно между зажимом заземления или контактом заземления и каждой из доступных металлических частей.
Измеряют падение напряжения между зажимом заземления прибора или контактом заземления приборного ввода и доступной металлической частью. Сопротивление, рассчитанное по значению падения напряжения и току, не должно превышать 0,1 Ом.
1 В случае возникновения сомнения испытание проводят до достижения установившегося состояния.
2 Сопротивление шнура питания не учитывают в измеренном сопротивлении.
3 Обращают внимание на то, что необходимо обеспечить, чтобы переходное сопротивление между концом измерительного щупа и испытуемой металлической частью не оказывало влияния на результат испытания.
(в ред. Изменения N 2)
27.6 Проводники в печатной плате не должны использоваться в качестве заземляющего проводника в ручных приборах. Они могут быть использованы в качестве заземляющего проводника в других приборах, если:
— по крайней мере два проводника используются с независимыми припойными точками и прибор соответствует требованиям 27.5 для каждого типа схемы;
— материал проводника в печатной плате выполнен в соответствии с ГОСТ 26246.4 или ГОСТ 26246.5.
Соответствие требованию проверяют осмотром и соответствующими испытаниями.
Как определить провод заземления
При монтаже розетки или других элементов электропроводки, необходимости подключения кабеля в распределительной коробке, стает вопрос о том, как определить где какой провод из трех имеющихся. Где находится фазный провод, как правило, определить не сложно – для этого достаточно воспользоваться индикаторной отверткой. Дальше стает вопрос: где из оставшихся двух проводов нулевой рабочий проводник, а где проводник защитного заземления.
Если проводники не промаркированы, то есть, на них нет соответствующих бирок, указывающих, где какой провод, то для многих это стает проблемой. В данном случае нужно точно определить, где какой провод, так как в случае ошибочного подключения возможны негативные последствия – короткое замыкание или поражение электрическим током. Ниже постараемся ответить на вопрос о том, как определить провод заземления в домашней электропроводке.
Что такое ноль, фаза и заземление:
Заземление — третий провод в однофазной сети (по ней ток попадает в наши квартиры), рабочей нагрузки он не несет, но служит своего рода предохранителем,
Ноль (при разомкнутой цепи, например в розетке, напряжения на нулевом проводе нет),
Фаза — фазовый провод, по которому течет ток.
Цветовая маркировка проводов
Кабеля и провода могут иметь цветовую маркировку. Если электропроводка была монтирована по всем правилам, и каждый из проводников линий проводки был подключен строго по цветам, соответствующим общепринятым для фазного, нулевого и заземляющего проводников, то проблем в поиске, где какой проводник, не возникнет.
В соответствии с ПУЭ синим или голубым цветом маркируется рабочий нулевой проводник, полосатым желто-зеленым – защитный заземляющий проводник. Что касается фазного проводника домашней электропроводки, то он может быть одним из следующих цветов – белого, черного, коричневого, красного, серого, фиолетового, розового, оранжевый и бирюзовый. Производители кабельно-проводниковой продукции могут выбрать один из приведенных цветов для маркировки фазного проводника.
Другой вопрос – было ли выполнено подключение правильно. Быть уверенным, что провода были подключены по цветам правильно можно лишь только в том случае, если монтаж электропроводки был выполнен самостоятельно.
Во всех остальных случаях не может быть гарантировано, что все линии проводки были подключены строго по цветам и, следовательно, при необходимости подключения тех или иных элементов к электропроводке нельзя ориентироваться на цветовую маркировку проводников, чтобы избежать ошибки при подключении.
В данном случае для определения провода заземления необходимо воспользоваться другими способами, которые рассмотрим ниже.
Определение провода заземления при помощи мультиметра
Когда дело касается электропроводки, то, прежде всего, следует помнить о мерах безопасности и обесточивать электропроводку каждый раз, когда необходимо будет производить работы с оголенными жилами и другими токопроводящими элементами. Например, при необходимости зачистки жил кабеля или подключения кабеля к розетке.
Итак, перед нами три провода – фазный, нулевой и заземляющий, которые никак не промаркированы. Фазный проводник, как и упоминалось в начале статьи, определить легко, при помощи индикаторной отвертки. Остальные проводники можно определить при помощи мультиметра.
Выставляем мультиметр на диапазон измерения переменного напряжения величиной выше 220 В. В зависимости от типа мультиметра, величины измеряемого напряжения могут отличаться, но в любом случае нужно выбирать предел выше 220 В.
Измеряем поочередно между фазным проводником и одним из оставшихся, затем между фазным и другим проводником. Большее из двух значений – это напряжение между фазным проводником и рабочим нулевым, соответственно меньшее значение напряжение будет между фазным и заземляющим проводником.
Следует отметить, что многие электрики советуют рассмотренный способ определения нулевого и заземляющего провода, даже не уточняя, какая система заземления электропроводки.
Данная рекомендация относительно поиска провода заземления актуальна исключительно для сетей конфигурации TT, то есть для тех случаев, когда домашняя электропроводка имеет индивидуальный заземляющий контур, а нейтральный проводник электрической сети используется исключительно в качестве рабочего нулевого провода.
Что касается наиболее распространенной в наше время сети конфигурации TN-C-S, то для такой сети вышеприведенная рекомендация неактуальна.
Данная система заземления предусматривает разделение совмещенного проводника на рабочий нулевой и защитный проводник непосредственно в здании, то есть, по сути, данные проводники электрически соединены между собой, от точки разделения до места проведения замеров примерно одинаковое расстояние и соответственно одинаковое сопротивление.
Поэтому в данном случае замеры покажут одинаковое значение напряжения, отличия в несколько вольт не могут быть признаком того, что это нулевой провод или заземляющий.
В сетях конфигурации TN-S такой способ также не актуален. В данных сетях рабочий нулевой проводник и защитный заземляющий проводник разделен на всем протяжении электросети от источника питания до потребителя. Сопротивление проводов линии электропередач разное и соответственно разница в замерах напряжения между фазой и поочередно нулевым и заземляющим проводником обусловлена исключительно разницей сопротивления.
Способ с отключением нулевого провода
Для того чтобы точно определить провод заземления в электропроводке необходимо выполнить следующие манипуляции. Первое, что нужно сделать – отключить от сети все электроприборы, чтобы через них не проходил ток в нулевой провод электропроводки.
Затем в электрическом распределительном щитке необходимо отключить нулевой провод путем отсоединения его от вводного автоматического выключателя или от нулевой шины, от которой осуществляется разветвление нуля на другие линии. Таким образом, на всей электропроводке будет присутствовать фазный проводник и защитный заземляющий.
Берем мультиметр и поочередно измеряем напряжением между заведомо промаркированным фазным проводником и двумя другими. В данном случае напряжение будет показано только между фазным и заземляющим проводником, который можно сразу промаркировать. Между фазным и нулевым проводником не будет напряжения, так как он отключен в щитке. Возможно, будет небольшое значение, до десятка вольт – это так называемое наведенное напряжение.
Прозвонка электропроводки
Определить провод заземления домашней электропроводки можно посредством проведения прозвонки. Данный способ актуален для тех случаев, когда на одном конце прозваниваемого кабеля заведомо известно расположение нулевого и заземляющего проводника, а на другом отсутствует маркировка.
В данном случае достаточно обесточить электропроводку и методом проверки целостности жил определить начало и конец каждой из жил кабеля. Например, в распределительной коробке одной из комнат квартиры промаркированы фазный, нулевой и защитный проводник, а кабель, подключенный от данной распределительной коробки, не имеет никаких маркировок.
Перед проведением работ электропроводку необходимо полностью обесточивать. Для прозвонки можно использовать обычную самоделку из лампочки, батарейки и проводов или мультиметр в режиме прозвонки. Если длина кабеля сравнительно небольшая, например, в пределах комнаты, то можно использовать провода необходимой длины для подключения к обоим концам кабеля.
Для длинных участков, например, от распределительного щитка до розетки одной из комнат, лучше использовать заведомо известную с обоих концов жилу. Для этого, пока электропроводка не обесточена, необходимо индикатором найти фазный проводник и промаркировать его с обоих концов прозваниваемого участка.
После обесточения электропроводки следует подключить один щуп мультиметра (или самоделки) к промаркированному проводу, а другим щупом к одному из двух оставшихся проводов.
На другом конце прозваниваемого участка касаемся поочередно двумя проводами к ранее промаркированному проводу и, таким образом, определяем второй конец провода и маркируем его с обоих концов.
В заключении следует отметить, что если возникла необходимость определения провода заземления, то лучше его сразу промаркировать таким образом, чтобы в дальнейшем не пришлось производить данную процедуру повторно.
Для этой цели можно приобрести термоусадочную или полиэтиленовую трубку цветов соответствующих общепринятой маркировке жил, о которой упоминалось в начале статьи, или использовать для этой цели бирки.
Провод заземления: маркировка, цвет, требования, сечение
Неотъемлемым элементом большинства современных электроустановок является провод заземления. Данное приспособление используется для электрического соединения каких-либо элементов с нулевым потенциалом земли, который в электротехнических расчетах принимается равным нулю.
Назначение
Провод заземления предназначен для защиты человека от поражения электротоком в нештатных ситуациях. К примеру, при пробое изоляции возникает электрический контакт между токоведущими элементами и корпусом прибора. В случае прикосновения человека к такому устройству электрический ток протечет через него на землю, что может привести к электротравме и даже к летальному исходу. Опасным для человека считается ток в 100 мА, из-за чего вероятность протекания тока необходимо свести к минимуму.
Рис. 1: Схема протекания тока при электроударе
Для исключения угрозы человеческой жизни в электроустановках устанавливается заземляющий провод. Посредством провода заземления обеспечивается электрическое соединение всех токопроводящих элементов, нормально не находящихся под каким-либо рабочим потенциалом, с контуром заземления. И в случае возникновения потенциала на корпусе или других элементах заряд будет стекать через провод заземления, а при наличии защиты инициирует ее срабатывание.
Несмотря на то, что преимущественное большинство заземлителей устанавливается с целью защиты человека, существует и такая категория, которая предназначена для выполнения рабочих процессов. Поэтому все провода заземления, в соответствии с их назначением, условно можно подразделить на рабочие и защитные проводники. Следует отметить, что опасность электроудара существует не только при отсутствии заземляющего проводника, но и при его несоответствии предъявляемым требованиям.
Предъявляемые требования
Требования к заземляющему проводу предъявляются в соответствии с местными условиями, в которых эксплуатируются электроустановки. Также они могут отличаться в соответствии с поставленными задачами или режимом работы. Все требования можно разделить по таким параметрам проводов заземления:
- Одножильный или многожильный – применяются в зависимости от конкретного оборудования. Так многожильные провода должны устанавливаться в тех местах, где требуется определенный уровень гибкости и заземление должно легко перемещаться (дверцы ячеек, испытательное оборудование и т.д.). Одножильные провода обеспечивают жесткую фиксацию и крепятся к корпусам стационарного оборудования.
- Наличие или отсутствие изоляции – изоляционный слой требуется при открытой прокладке или по корпусам оборудования.
- Отдельно проложенный или находящийся в составе цельного кабеля – при объединенной конструкции в однофазных системах должен выполняться трехжильным кабелем, а в трехфазных пятижильным. Если система уже смонтирована, то должен выполняется отдельным заземляющим проводником.
- Материал токопроводящего элемента (медь, алюминий, сталь) – определяет удельное сопротивление самого проводника и его химическую устойчивость к различным воздействиям окружающей среды. Медные жилы являются наиболее устойчивыми к коррозии и обладают наименьшим удельным сопротивлением, за ними идут алюминиевые и стальные.
Важнейшим требованием к заземляющему контуру и подключаемым к нему проводнику является общее омическое сопротивление. Которое определяется и сечением провода заземления, и переходным сопротивлением между ножами контура и грунтом, и местами болтовых (клеммных) или сварных соединений в общей цепи. Общая величина сопротивления контура определяется п.1.7.101 – 1.7.103 ПУЭ в зависимости от линейного или фазного напряжения электроустановки и ее типа, данные параметры приведены в таблице ниже:
Таблица: величина сопротивления заземления
Тип заземляемой электроустановки | Величина линейного напряжения Uл, В | Величина фазного напряжения Uф, В | Сопротивление заземлителя R, Ом не более |
Места присоединения нейтралей генераторов, трансформаторов и других источников тока | 660 | 380 | 2 |
380 | 220 | 4 | |
220 | 127 | 8 | |
Точки подключения, расположенные вблизи мест присоединения присоединения нейтралей генераторов, трансформаторов и других источников тока | 660 | 380 | 15 |
380 | 220 | 30 | |
220 | 127 | 60 | |
Места повторных заземления ВЛ и питающих линий | 660 | 380 | 15 |
380 | 220 | 30 | |
220 | 127 | 60 |
Помимо медных проводов в соответствии с п.1.7.121 ПУЭ для заземления допускается использовать металлическую бронированную оболочку, применяемую для защиты от механических повреждений при прокладке кабеля, короба и лотки, если их размещение исключает возможность их повреждения, рельсы и балки в конструкции зданий и сооружений.
Но, согласно требований п.1.7.123 ПУЭ в качестве заземляющих проводников запрещено использовать металлические части газопроводов или труб водоснабжения, нагруженную арматуру железобетонных конструкций.
Маркировка и цвет
Маркировка проводов заземления обеспечивает им быструю узнаваемость и удобство в проведении монтажных работ. Так согласно требованиям п.1.1.29 ПУЭ проводники для заземления обладают как буквенной, так и цветовой маркировкой. Буквенное обозначение земли выполняется сочетанием латинских букв PE. Буквы предназначены для нанесения маркировки на соответствующих узлах схемы, концах кабеля и клеммах заземления. Цветовое обозначение выполняется в виде желто-зеленого окраса, расположенного полосами по всей длине или другим сочетанием этих двух цветов, которое соответствует марке кабеля и стандартам производителя.
В зависимости от способа питания электропотребителей может применяться система, в которой защитный и нулевой проводник совмещены. Так как маркировка нулевого провода согласно того же п.1.1.29 ПУЭ выполняется синим или голубым цветом и обозначаются буквой N, в таких системах электроснабжения, где нейтральный провод и заземление совмещены и выполняются единой линией, они обозначаются как PEN. В цветовом отношении совмещенный PEN проводник имеет сочетание синей и желто-зеленой изоляции.
Следует отметить, что вышеприведенный порядок цветовой маркировки не относится к шинам, так как в них желтый обозначает фазу A, зеленый – фазу B, красный – C. Нулевая шина может вообще не иметь окраса и эксплуатироваться в естественном виде. Шина PE окрашивается в черный цвет, а места наложения переносных заземлений организованны в виде оголенных участков металла.
Сечение провода заземления
Так как эффективность срабатывания защитного устройства и обеспечение безопасности человека напрямую зависит от такого параметра, как омическое сопротивление, провод заземления должен иметь соответствующее сечение, отвечающее рабочим параметрам проложенной линии или электроустановки. В связи с тем, что в отличии от фазной и нулевой шины, защитное заземление не должно длительно выдерживать нагрузку, его сечение может выполняться с отличными параметрами.
Рисунок 3: пример кабеля с меньшим сечением PEN жилы
Так сечение PE проводника определяется в соответствии с п.1.7.126 ПУЭ, наиболее простым вариантом является вычисление величины исходя из площади фазных проводников:
- Для фазного провода до 16мм 2 сечение заземления должно быть таким же;
- Для моделей от 16 до 35мм 2 заземление может быть не менее 16мм 2 .
- Для линий с сечением фазного провода от 35 мм 2 и более заземляющий провод должен выбираться площадью не менее половины фазного.
Данный вариант является наиболее простым, но далеко не всегда целесообразно устанавливать проводник большого сечения на заземление, так как это влияет на общую стоимость кабельно-проводниковой продукции. В таких случаях допускается определить сечение расчетным путем:
- S – площадь заземляющего провода;
- I – величина тока короткого замыкания;
- t – время срабатывания защитных устройств;
- k — коэффициент, определяемый материалами токоведущих и изолирующих элементов, температурой.
Подключение
Перед подключением необходимо обозначить основные выводы пяти или трехжильных проводов. Если вы только выполняете монтажные работы, то сможете самостоятельно определить какой провод куда подключить, в противном случае вам придется разбираться в уже существующей проводке. На практике, чтобы определить в схеме подключения расположение всех видов проводов воспользуетесь их цветовым обозначением:
- Фазные проводники – имеют самый разнообразный спектр (коричневые, красные, серые, фиолетовые и т.д.);
- Заземляющие проводники – выполняются желто-зеленым цветом, некоторые изготовители применяют только ярко-зеленый окрас;
- Нулевой проводник – синий или голубой.
Рис. 4: цветовое соответствие проводов
Однако заметьте, что не все монтажники соблюдают стандартный порядок маркировки или сам провод может не соответствовать схеме питания, поэтому перед использованием заземляющего или фазного провода стоит предварительно их прозвонить.
Рис. 5. Пример подключения заземления
Само подключение производится таким образом, чтобы обеспечить максимально надежный контакт с нулевым или близким к тому переходным сопротивлением. Поэтому наиболее приемлемыми является пайка, обжим или затяжка под гайку или наконечник.
Категорически запрещено выполнять электрическое соединение провода заземления скрутками и другими нетиповыми способами. Если происходит соединение медного и алюминиевого проводника, между ними обязательно устанавливается латунная прокладка или они обжимаются в гильзу. Далее провод заземления подключается от контура к корпусу оборудования, металлическим элементам для выравнивания потенциала или на соответствующий контакт розетки.
Видео в развитие темы
Кабель и вилка – неразлучная пара
Можете ли вы представить себе подключение бытового электроприбора не вилкой в розетку, а как-то иначе? За десятилетия эта технология дошла до своей кульминации и не требует никаких доработок сама по себе. Однако, анализируя печальную статистику по поражению электрическим током и возникновению пожаров, становится очевидно, что значительная часть таких трагедий неразрывно связана с неправильным подсоединением кабеля к вилке или эксплуатации пары «вилка – розетка».
Кабели электроприборов, как правило, оснащены собранными вилками, однако есть несколько нюансов их эксплуатации и замены. Да и бывает, что у прибора есть лишь клеммы, к которым нужно подключить кабель с вилкой, а чересчур «экономные», но некомпетентные покупатели решают сделать это самостоятельно. Иногда появившиеся повреждения в изоляции кабеля требуют его замены, и в этом случае также потребуется провести ремонтные работы.
Правильные и точные знания дадут возможность сделать это качественно и достичь безопасности, поэтому следует узнать как правильно подключать кабель к вилке, и что следует учесть при включении приборов в розетку.
Кабели для подключения электроприборов
На рынке кабельной продукции достаточно большой ассортимент кабелей, отлично работающих в бытовых условиях, вот некоторые из них: NYM, ПВС, КГ, традиционный ВВГ и многие другие.
1. Двух- или трёхжильный кабель. Будет правильно, если здание оборудовано защитным заземлением, тогда потребуются трёхжильные кабели. Если заземления нет, то достаточно двухжильных кабелей, но защита от утечек будет невозможна.
2. Выбор сечения шнура или кабеля для подключения электроприбора. Обычно, сечение подключаемого кабеля равно сечению электрической линии для его подключения, ни больше, ни меньше. Также важно учесть мощность подключаемого прибора. Ведь если мощность прибора или неполадки в нём вызовут большое значение тока, то отрезок кабеля (если брать меньшее сечение) от прибора к розетке будет явно перегружен. И наоборот, если сечение подключаемого кабеля больше, чем у линии, то перегруженной будет линия.
Простой пример: Линия сечением 2,5 мм кв., питающий кабель – 1,5 мм кв. При токе в линии до 25 А, скажем 24 А, линия в норме, да и стоящий на этой линии защитный автомат, тоже в нормальном режиме. А вот кабелю-«полторашке» этого тока достаточно, чтобы оплавить изоляцию за считаные минуты или даже секунды.
Какие вилки нам доступны
В мире их довольно много, но у нас есть четыре популярные позиции:
1. Тип С (по нашему ГОСТу 7396.1-89), вилки неразборные, снабжённые шнурами или кабелями и уже подключённые к приборам.
Не ремонтопригодные, а только заменяемые на разборные.
2. Тип С5 (аналог европейским CEE 7/16), с круглыми штырями диаметром 4 мм, изолированными на 10 мм от корпуса самой вилки.
Без заземляющих контактов, рассчитаны на мощность подключаемого прибора до 1 300 Вт, что эквивалентно току до 6 А.
3. Тип C6 (аналог европейским CEE 7/17), по-нашенски «евровилка», с круглыми штырями диаметром 4,8 мм.
Могут быть снабжены заземляющим штырём или без штыря. Рассчитаны на мощность подключаемого прибора до 2 000 Вт, что эквивалентно току до 10 А.
4. Тип C1-b, разборные с круглыми штырями диаметром 4 мм, рассчитаны на мощность подключаемого прибора до 1 300 Вт, что эквивалентно току до 6 А.
Особенности неразборной вилки
Во всех случаях, в таких вилках токопроводящие штыри соединены опрессовкой или пайкой к проводам и снабжены 2-мя обводными выступами для защиты шнура или кабеля от обрыва при использовании.
Предупреждение: Не отключайте вилку из розетки за провод, а так: одна рука берёт корпус вилки (корпус, а не шнур), а вторая – придерживает розетку. Это же правило применимо и к другим видам вилок.
Правильное подключение вилки к кабелю
Правило №1. Неразборные вилки выбрасываются, а не «приклеиваются» на…
Правило №2. В разборных вилках для подключения кабеля применён обжим (что в согласии с ПУЭ), но ваша задача – получить качественный контакт. Достичь этого можно, если залудить обжимаемые концы.
1. Присоединение проводов к вилке типа C1-b.
- Не подсекая жил снимите изоляцию с проводов на 20-25 мм.
- Сформируйте колечки вокруг обжимных винтов вилки, а оставшийся нахлёст накрутите вокруг зачищенного основания.
- Сняв готовое колечко, залудите его, но не допуская перегрева (оплавления изоляции).
- Снова оденьте облуженные колечки на винты и зажмите их в штыри до упора, но не срывая резьбу.
- Вставьте готовые штыри с проводами в их посадочные углубления.
- Отходящий провод в его изоляции, но без усилия прижмите специальной изолирующей планкой через изоляцию к корпусу, не повреждая наружную кабельную оболочку .
- Соединив половинки корпуса, плотно стяните их винтом и гайкой.
2. Присоединение проводов к вилке типа C5 и С6.
Всё практически также, но без колечек, так как в евровилках есть удобные клеммы. Провод сечением 2,5 мм кв. следует зачистить до 8-10, а а 1,5 мм кв. – до 14-20 мм, так как «полторашку» лучше после зачистки сложить вдвое и, скрутив, вставить в отверстие клеммы. Хотя качество контакта достаточно хорошее, лучше, если изредка поджимать винты в клеммах.
Правило №3. Не изобретайте велосипед, пытаясь подключить хоть куда-то третий проводник, если нет заземления. Просто оставляйте его незачищенным как резерв, для случая обрыва одной из жил.
Какая вилка надёжнее: литая или разборная?
Ответ на этот вопрос лишь один: если это не совсем халтурное изделие, то литая неразборная вилка лучше.
И вот почему: соединение проводников и штырей осуществляется на производстве точечной сваркой, пайком и лишь крайне редко обжимом. В любом случае, последующее герметичное литьё корпуса из ПВХ пластика надёжно защищает контакты от окисления, влаги и механических повреждений на длительный срок.
У литых вилок есть только один недостаток: как ни защищай то место, где кабель входит в вилку, но со временем провод может оборваться… И чем чаще пользуетесь переносным прибором, феном, плойкой, бритвой и т.д., тем чаще и обрывы. Но стоит рвать волосы, ведь если прибор не на гарантии, то, пользуясь описанием выше, можно обрезать в месте разрыва кабель и подсоединить новую, качественную разборную вилку.
В какой цвет окрашиваются провода заземления
Бродя по просторам интернета, часто встречал, что многие пользователи задают такой вопрос, какого цвета провод заземления? Честно говоря ответа на него я и сам не нашел поэтому решил об этом написать по подробнее.
Цветовая раскраска изоляции проводов это один из видов их маркировки. Изоляция окрашивается в разные цвета для того чтобы можно было визуально определить их название и принадлежность (в сетях однофазного и трехфазного тока).
Благодаря такой цветовой маркировке значительно упрощается монтаж, особенно с большим количеством проводов (например, в электрощите).
Цвет проводов электропроводки играет очень важную роль во время проведения электромонтажных работ. Однако стоит отметить, что еще начиная со времен существования Советского Союза, цветовая маркировка у проводов не отличалась особо жесткой регламентацией. Преимущественно это было заметно в бытовой электропроводке, где к стати говоря и в наше время не все придерживаются особых правил цветовой маркировки при монтаже.
В промышленных электроустановках придерживаются четкой маркировки, так как там электроэнергия передается по трем фазам, которые окрашиваются в желтый, зеленый и красный цвет, здесь неправильная маркировка может привести серьезным последствиям и выходу из строя дорогостоящего оборудования.
Какого цвета провод заземления
Провода в кабеле имеют разные назначения. Это назначения следует учитывать во время выполнения соединений между проводами, а также для того, чтобы правильно подключать электроприборы. На самом деле очень легко избежать ошибок во время подключения, так как в кабеле у каждого провода свой собственный цвет. Необходимо придерживаться такого простого правила, как: «Во время соединения проводов, не меняй их цвет».
Согласно правилам, в бытовой электропроводке:
- — фазный провод L — имеет коричневый или красный цвет;
- — нулевой рабочий N — (или как его называют «нейтральный» или «ноль») окрашивается в синий цвет;
- — нулевой защитный PE — (заземляющий проводник) окрашивается в желто — зеленый цвет.
Согласно правилам ПУЭ 1.1.29 — цвет провода заземления желто — зеленый . |
Проводники защитного заземления во всех электроустановках, а также нулевые защитные проводники в электроустановках напряжением до 1 кВ с глухозаземленной нейтралью, в т.ч. шины, должны иметь буквенное обозначение «PE» и цветовое обозначение чередующимися продольными или поперечными полосами одинаковой ширины желтого и зеленого цветов. |
Ошибок в соединении участков электросети можно избежать, если соединять коричневый провод с коричневым, синий провод с синим и так далее. Именно по этой причине в подавляющем большинстве кабелей изоляция всех проводов отличается своим собственным цветом. Также заметим, что провод, который окрашен в зелено-желтый цвет, будет постоянно использоваться в качестве заземляющего, то есть его нужно подсоединять лишь на клемму заземления.
Если для монтажа используется без цветные провода например марки ППВ плоский трехжильный с одинарной изоляцией, то у электриков правилом хорошего тона принято считать заземляющим проводником среднюю жилу.
Еще один пример как правильно выполняется расцветка проводов. Как видно на фото на шину заземления подключены соответствующие провода и цвет провода заземления является желто-зеленым.
Как устранить повреждения в электропроводке
Простые повреждения в электропроводке можно устранить самому. При этом следует помнить, что все монтажные работы выполняются только при обесточенной проводке, т. е. вывернутых пробках.
Чтобы избежать перегрузок на электропроводку при пользовании большим количеством электроприборов, производят расчет. Например, мощность всех горящих ламп и электроприборов в сумме равна 1000 Вт, а напряжение в сети 220 В, тогда суммарная сила тока составит 4,5 А (1000 Вт/220 В). Если установленный предохранитель рассчитан на 6 А, перегрузки сети не будет.
Если в доме погас свет , то прежде всего надо убедиться, не произошло ли то же самое у соседей, чьи дома подсоединены к этой линии. Если у них электросвет есть, значит, неисправность — в вашем жилище.
Поиск повреждения ведут с помощью контрольной лампы (электрический патрон с лампочкой 15 Вт и присоединенный к нему небольшой провод с вилкой). Чтобы проверить сеть, вилку вставляют в штепсельную розетку. Если лампочка загорится, значит, сеть исправна. Контрольную лампочку подсоединяют к проверяемой электросети последовательно или параллельно по отношению к штепсельной розетке.
Однако бывает, что из строя выходит только часть проводки или даже какая-нибудь розетка. Если тока нет в одной комнате, то проверяют распределительную коробку, от которой проводка идет в эту комнату. Если в ней нет напряжения, значит, повреждение находится перед ней, если же напряжение есть, то после нее. И так до тех пор, пока повреждение не будет найдено.
Все неисправности следует немедленно устранить. Приступая к ремонту электроприборов и сети , следует запомнить следующие правила техники безопасности. Запрещается: красить и белить электропроводку; подвешивать какие-либо предметы; выдергивать штепсельную вилку из розетки за провод; вытирать мокрой тряпкой горящие электролампы; прикасаться во время работы с электроприборами к заземленным предметам (кранам, трубам, батареям, плитам, ваннам и т. п.); мокрыми руками прикасаться к выключателю, розетке, цоколю электролампочки, электроприборам, находящимся под напряжением; гладить влажное белье утюгом с поврежденным проводом; устанавливать штепсельные розетки в сырых помещениях; заливать водой и обрывать руками загоревшиеся провода; надо немедленно вывернуть пробки, отключить электрический ток; огонь гасить землей, песком, преградить к нему доступ воздуха.
Обнаружение неисправности в шнуре электроприбора . Если включенный в сеть электроприбор не работает, надо проверить, есть ли напряжение в штепсельной розетке. Для этого в розетку включают контрольную лампу. Если лампа загорится, штепсельная розетка исправна. Надо проверить шнур прибора. Вилку шнура вставляют в штепсельную розетку, а с другого конца — к контакту электроприбора подключают контрольную лампу. Если лампа не загорится, значит, шнур неисправен. Чаще всего неисправность шнура бывает в месте соединения его концов со штепсельной вилкой или контактными штифтами.
Пробники делятся на две группы. Первая группа пробников служит проверке целостности обесточенной сети. Каждый из них состоит из двух проводников, источника тока и сигнализатора появления тока. Простейшим пробником является простая батарейка с лампочкой. Специальных щупов для нее не требуется. Вместо лампочки могут выступать наушники или радиоточка. Даже телефонная трубка может выступать индикатором наличия тока в сети. А также электроизмерительный прибор с резистором, который ставят для ограничения тока, текущего через прибор. Можно использовать с этими целями ваттметр или вольтметр, правда, в последнем для увеличения чувствительности устраняют добавочное сопротивление.
Для пробника с источником питания от осветительной сети с напряжением 127 В или 220 В все элементы берутся из материалов, предназначенных для этой сети: электролампа, патрон, провод, вилка. Пробник удобнее монтировать в коробку из непроводящего материала. Это устранит опасность взрыва колбы лампы в момент функционирования пробника. Для уменьшения размеров пробника можно применить патрон и лампочку от холодильника или швейной машины. Шнуры и провода пробника, питающегося от квартирной сети, берутся следующих марок ШВП-1, ШПС, ПВС, ШВВП. Обычно такие провода применяются в утюгах и электроплитках. Щупы приделывать не обязательно. Жилы могут выступать из-под изолированного провода на 1—2 мм. Сама изоляция проводников от обнаженных окончаний в 100—150 мм покрывается прорезиненной изоляционной лентой в несколько слоев.
Пробником с источником питания от электросети с напряжением 127 или 220 В разрешается пользоваться в сухих помещениях, вдали от заземленных предметов домашнего обихода и на резиновом сухом коврике.
Для того чтобы сделать наконечники пробника, вытачивают пластмассовую трубу с фланцами, в каждую трубу вводят и закрепляют латунный или медный стержень диаметром 3,5 мм. Этот стержень спаивают с жилой проводника. Сам спай располагают внутри пластмассовой трубки, стержни из трубки должны выступать на 180 мм. При работе внутри устройства стержни не должны вызывать случайных контактов, ибо на стержни натягивают полихлорвиниловую или резиновую трубки. Из этих труб концы стержня должны выступать на 1—3 мм.
Вторая группа пробников предназначена для определения наличия тока в сети. Основную массу их составляют индикаторные отвертки. Наличие тока в сети с помощью индикатора-отвертки можно узнать по загоранию неоновой газоразрядной лампы. Ток в этой отвертке протекает от ее щупа в конец, куда ремонтник прикладывает свой большой палец. Перед лампой стоит резистор сопротивлением в 1 мОм. Тело человека при этом становится проводником. Через него ток, проходящий по отвертке, через газоразрядную контрольную лампу уходит в землю. Даже при напряжении в 380 В человеку этот ток не причинит вреда, потому что, как уже было сказано, отвертка застрахована от этого наличием резистора. При пользовании индикатором-отверткой не забывайте, что существует и провод «земли», по которому ток проходит только во время замыкания цепи.
Можно изготовить индикатор-отвертку из отслужившей свой срок авторучки и стартера для люминесцентных ламп. Для этого отгибают лепестки, снимают алюминиевый стакан стартера, отсоединяют от контактных ножек два проводника неоновой лампы, снимают ее. Далее к одному из концов проводника припаивают резистор сопротивления в 100—200 кОм. Чем больше сопротивление, тем меньше будет свечение лампы, которую вместе с резистором вставляют в корпус авторучки. К этому моменту в корпусе проделывают отверстие против расположения лампы. Вместо пера вставляют подходящий по диаметру стальной стержень. При этом, конечно, поршневой механизм или пипетку из корпуса удаляют. Свободный конец лампы и металлический стержень соединяют пайкой или резьбой. Второй конец резистора соединяют с металлическим колпачком корпуса авторучки. Сделанный таким образом индикатор фиксирует ток напряжением 50—220 В переменного тока.
Одним из необходимых и часто употребляемых изделий является контрольная лампа . Следует, правда, помнить, что она запрещена к применению, но ее эффективность и отсутствие других приспособлений говорят в пользу ее применения. Следует при этом соблюдать меры безопасности. Самое главное, что этим прибором следует пользоваться только до электросчетчика. При использовании контрольной лампы следует надеть диэлектрические перчатки, натянув при этом их на рукава. В сухих помещениях можно использовать хозяйственные резиновые перчатки. Стоять при работах с этим приспособлением следует на диэлектрическом коврике, в крайнем случае, его можно заменить сухим сложенным вдвое хозяйственным ковриком. Коврик стоит положить на сухую деревянную доску. Если в квартире сухой деревянный пол или пол, покрытый линолеумом, то без подкладывания доски можно обойтись.
Лампу следует поместить в корпус из диэлектрического материала с прорезью для светового сигнала. Сетчатый чехол, надетый на лампу, предохраняет лампу от ударов, но не предохранит вас от осколков колбы, если лампа взорвется. Два проводника к патрону лампы нужно проводить через разные отверстия в корпусе. Твердые края отверстия могут перетереть изоляцию проводников, и такое расположение проводов убережет от короткого замыкания. Длина проводника, выходящего из каждого отверстия, не должна быть менее одного метра.
При проверке проводки контрольная лампа должна висеть на проводах. Если проверка идет вблизи пола, то лампу надо отодвинуть как можно дальше от себя. Держатели щупов проводов изготавливают из пластмассы. Фланцы на щупах исключают попадание пальцев на токонесущие части установок и на обнаженные концы щупов, вставленных в держатели. Контрольную лампу оснащают электролампой напряжением в 220 В. При проверке сети на лампу лучше не смотреть, так как она может взорваться.