Токовая защита блока питания схема
Токовая защита блока питания схема
Токовое реле для системы защиты стабилизаторов.
Датчик тока для системы защиты — неотемлемая часть всех современных источников питания. После многочисленных экспериментов с целью повышения экономичности мощных стабилизаторов пришлось взяться и за этот казалось бы классический узел, чаще всего представляющий собой низкоомный мощный резистор, падение напряжения на котором и используется как признак перегрузки по току. Для надёжной фиксации факта перегрузки падение на резисторе должно быть достаточно заметным — порядка 0.7в (для открывания транзистора). При этом на резисторе впустую рассеивается заметная мощность. Особенно недостатки такого способа контроля тока бывают заметны в случае, когда входное напряжение до стабилизатора и так невелико. (Из-за имеющегося в наличии готового трансформатора или просадки напряжения сети). Можно, конечно же попробовать сделать чувствительный компаратор, срабатывающий при очень небольшом перепаде напряжения, но это заметно усложняет схему БП, а также такие схемы имеют существенную нестабильность параметров, которая может проявиться в самый неподходящий момент в хорошо прогретом блоке питания. Поэтому была сделана попытка применить в качестве датчика тока быстродействующее токовое реле на герконе. Принципиально токовое реле ничем не отличается от обычного реле, в том числе и герконового, но обмотка его включается последовательно с нагрузкой, а не параллельно, как обычные реле. Конструктивно реле представляет собой катушку, намотанную толстым жёстким проводом, внутрь которой вставлен геркон. При протекании постоянного тока через катушку внутри её образуется магнитное поле, которое и приводит к срабатыванию геркона при достижении током некоторой пороговой величины. Изменяя число витков катушки можно получить реле на очень разные значения тока.
Например, изображённое на фото реле имеет ток срабатывания ровно 5 ампер. Разумеется, ток срабатывания зависит и от типа геркона, причём чем большие габариты имет геркон, тем он чувствительнее.
На фото — стабилизатор на 13.8в, предназначенный для лабораторного использования. Как видно из схемы, стабилизатор, собранный по уже ставшей классической схеме на параллельном стабилизаторе TL431 и усилителе тока на составном мощном транзисторе, имеет защиту от КЗ на выходе, но не имеет защиты от перегрузки по току. Так как применённый трансформатор не очень мощный и начинает просаживаться задолго до того, как выйдет из строя регулирующий транзистор стабилизатора или диоды моста, то токовое реле здесь служит лишь для индикации перегрузки по току. Для этого геркон через ограничительный резистор подаёт напряжение на светодиод, расположенный на передней панели. Так как геркон имеет заметный гистерезис, то уверенно отмечаются даже самые кратковременные его срабатывания. Данная схема приведена лишь как пример использования токового реле. Подобным индикатором перегрузки можно доработать практически любой имеющийся блок питания, самодельный или заводской. Падение напряжения на токовом реле имеющимися у меня приборами мне измерить не удалось. (Кстати, заодно катушка может выполнять функцию фильтра для предотвращения проникновения в стабилизатор ВЧ наводок.)
При желании можно использовать контакт геркона для управления системой защиты БП, которая будет полностью отключать стабилизатор при перегрузке по току, с восстановлением его работы или без таковой. Можно подать через контакты геркона напряжение питания на звуковой генератор (зуммер), что позволит получить аудиоиндикацию перегрузки в том случае, если это необходимо.
Для примера приведена данная схема, где питание на стабилизатор (показан условно) подаётся через нормальноразомкнутые контакты реле после кратковременного нажатия кнопки «ПУСК» и схема остаётся во включенном состоянии до срабатывания токового реле P2 (перегрузка по току) или КЗ на выходе стабилизатора.
После срабатывания защиты схема переходит в режим готовности (индицируется HL1) и может находится в таком состоянии неопределённо долго до повторного нажатия кнопки «Пуск».
Ниже приведён пример практического использования данных схемных решений в лабораторном блоке питания,где чаще всего и нужна бывает хорошая защита.
В данной конструкции применены сразу два токовых реле, одно служит исключительно для индикации перегрузки и настроено на ток срабатывания 3А, а второе — защита и срабатывает при токе 5А .
Конструктив и детали.
Конструктивно БП выполнен на нескольких печатных платах. B1 — плата сетевого фильтра. Катушки L1 и L2 намотаны на ферритовом кольце с проницаемостью 2000, внешним диаметром 22мм и содержат по 12 витков провода в изоляции. Все конденсаторы фильтра — на напряжение не ниже 400в. В2 — плата выпрямителя. Выпрямитель собран по мостовой схеме на четырёх диодах КД213А, установленных на плате без радиатора. Параллельно каждому диоду со стороны фольги установлены smd конденсаторы по 2200пФ. Всё остальное хорошо видно на фото. «Древний» КТ803А применён исключительно из-за наличия его на подходящем радиаторе, вынесенном на заднюю стенку блока. При столь небольших токах и напряжениях можно применить практически любой подходящий транзистор в корпусе ТО220, такой как КТ805АМ, КТ819 или импортный. Вместо составного вполне можно применить и КТ829, что немного упростит монтаж. Светодиоды применены разного цвета — LED1 «Overload» — красный, LED2 «Ready» — жёлтый, LED3 «Work» — зелёный. При правильном монтаже блок питания в наладке не нуждается, достаточно подобрать число витков токовых реле для получения нужного тока срабатывания.
Внешний вид блока и монтажа — на фото.
UA1ZH © 2007
Токовая защита блока питания схема
Надёжная токовая защита для БП и ЗУ на IR2153 и электронном трансформаторе.
Автор: Blaze, cornage@bk.ru
Опубликовано 09.02.2016
Создано при помощи КотоРед.
На создание данной статьи меня спровоцировал опыт создания блоков питания и зарядных устройств на основе простых импульсных блоков питания, которыми являются как иип на IR2153, так и переделанный различными способами под блок питания электронный трансформатор. Данные источники питания являются простыми, нестабилизированными импульсными блоками питания без каких-либо защит. Не смотря на данные недостатки, такие источники питания довольно просты в изготовлении,не требуют сложной настройки, времени на создание такого блока питания требуется меньше чем на полный ШИМ БП с узлами стабилизации и защиты.
Обьединив такой блок питания и простейший ШИМ- регулятор на NE555, получам регулируемый блок питания как для экспирементов, так и для зарядки АКБ. Радости нашей нет предела до того момента, пока данный девайс не попробовать на искру, или по ошибке, размышляя над созданием очередного аппарата перепутать полярность заряжаемого АКБ. Окрикивая громким хлопком и орошая едким дымом помещение,в котором произошол данный конфуз, изобретение сообщает нам, что простой импульсный блок питания, который собран по упрощённо-ознакомительной схеме не может быть надёжным.
Тут пришла мысль о том, чтобы найти не просто ввести тот или инной узел защиты в конкретный экземпляр блока питания, а найти или создать универсальную быстродействующую схему, которую можно внедрять в любой вторичный источник питания.
Требования к узлу защиты:
-плата защиты должна занимать мало места
-работоспособной при больших токах нагрузки
-высокая скорость срабатывания
Одним из заинтересовавших вариантов была такая схема, найденная в интерете:
При замыкании выхода данной схемы, разряжается ёмкость затвора VT1 через диод VD1, что приводит к закрытию VT1 и ток через транзистор не протекает, блок питания остаётся целым и невредимым. Но что же произойдёт если на выход данной схемы подключить нагрузку, в 300вт, когда наш иип может выдать всего 200вт? Не смотря на то что у нас присутствует схема защиты, замученный блок питания снова взрывается.
Недостатки данной схемы:
1. Необходимо точно подбирать сопротивление шунта, чтобы максимально допустимый ток блока питания создал такое падение напряжения на выбранном шунте, при котором VT2, открываясь полностью закроет VT1.
2. В данной схеме может наступить момент, когда ток проходящий через шунт, приоткроет VT2, вследствии чего VT1 начнёт закрываться и останется в таком состоянии, что будет недозакрыт, а учитывая что через VT1 протекает немалый ток, то данный линейный режим вызовет его сильный перегрев, врезультате которого VT1 будет пробит.
В блоке питания на IR2153 однажды применял триггерную защиту, остался доволен её работой. Прицепим к схеме триггерной защёлки на комплиментарной паре транзисторов шунт в качестве датчика тока и n-канальный транзистор в роли ключевого элемента получаем такую схему:
После подачи питания на схему, транзистор Q3, через светодиод и R4 открывается, стабилитрон D3 ограничивает напряжение на затворе полевого транзистора. D4 защищает Q3 от выбросов высокого напряжения, при подключении индуктивной нагрузки (электродвигатель). На паре транзисторов Q1, Q2 собран аналог тиристора. Ток, протекающий через шунт R1, вызывает падение напряжения, которое с движка переменного резистора R10, и цепочку R2, С2, поступает на базу транзистора Q2. Величину напряжения с шунта, которое пропорционально току, протекающему через этот шунт можно регулировать прерменным резистором R10. В момент, когда напряжение на базе Q2 станет больше 0.5-0.7в транзистор Q2 начнёт открываться, тем самым открывая Q1, в свою очередь транзистор Q1открываясь, будет открывать Q2. Данный процесс происходит очень быстро, за доли секунды транзисторы откроют друг друга и останутся в таком устойчивом состоянии. Через открытый аналог тиристора затвро Q3, а также резистор R4 окажутся подключены к общему проводнику схемы, что приведёт к закрытию Q3 и свечение светодиода D1 сообщит о том что сработала защита. Снять защиту можно как отключив кратковременно питание, так и кратковременным нажатием на кнопку S1.
Универсальная схема защиты была создана и проверена в работе, шунт R1 был составлен из двух резисторов 0.22 Ом 5Вт. Остался последний шаг — вводим в нвшу схему защиту от переполюсовки клемм АКБ.
Схема с защитой от переполюсовки :
Наша схема дополнилась диодом D2, резисторами R6, R5. Кнопка S1 была убрана из схемы по причине того, что при срабатывании защиты она не выводила схему из защиты, после доработки.
Токовая защита осталась без изменений, снять защиту можно отключив питание на 2-3 секунды. При подключении к выходу схемы АКБ, перепутав полярность, напряжение с АКБ через диод D2, резистор R6 поступает на базу Q2, срабатывает защита Q3 закрывается, светодиод D1 сигнализирует о срабатывании защиты.
На этой волне я заканчиваю поиски защиты для своих простых иип. Работой своих схем доволен, надеюсь они пригодятся и вам.
Устройство токовой защиты источника питания
Описанный в этой статье узел токовой защиты разработан для источника питания, описание которого можно найти в [1], работающего совместно с измерителем выходного напряжения и тока нагрузки [2]. Узел отличается от других подобных устройств тем, что, кроме выполнения функций защиты, позволяет устанавливать и контролировать порог срабатывания по измерителю тока нагрузки блока питания, не нагружая его.
В большинстве устройств токовой защиты порог срабатывания изменяют переменным резистором с отградуированной шкалой либо переключателем с набором резисторов. В первом случае сложно установить требуемый порог точно, во втором — число его возможных значений ограничено числом положений переключателя. Кроме того, его контакты должны выдерживать максимальный ток нагрузки, а такие переключатели довольно дороги.
Представленное в этой статье защитное устройство позволяет устанавливать порог срабатывания защиты во всём интервале работы измерителя тока нагрузки с точностью, обеспечиваемой этим измерителем без всяких градуировок и подборки резисторов.
Защитное устройство работает в двух режимах — ограничения тока нагрузки и выключения выходного напряжения при превышении порога (триггерный режим). Его схема представлена на рис. 1. Оно построено на ОУ DA1, включённом по схеме неинвертирующего усилителя.
Рис. 1. Схема защитного устройства
На инвертирующий вход ОУ поступает образцовое напряжение с резистивного делителя R4-R6. В качестве входного сигнала устройства защиты использовано напряжение с выхода усилителя узла измерения тока [2]. Пока нагрузки нет, на выходе этого усилителя, а следовательно, и на неинвертирующем входе ОУ DA1 напряжение нулевое. Поскольку напряжение на его инвертирующем входе выше нуля, на выходе этого ОУ напряжение ниже нуля, транзистор VT1 закрыт, а светодиод HL1 выключен.
С появлением тока нагрузки напряжение на неинвертирующем входе ОУ растёт. Как только оно превысит образцовое, напряжение на выходе ОУ станет выше нуля и откроет транзистор VT1. Последний, открываясь, шунтирует выход параллельного стабилизатора напряжения DA1 (рис. 5 в [2]). Выходное напряжение источника питания, а с ним и ток нагрузки уменьшаются до тех пор, пока напряжение на неинвертирующем входе ОУ DA1 не сравняется с образцовым. Ток нагрузки будет ограничен на установившемся уровне. Светодиод HL1 сигнализирует о переходе в режим ограничения тока.
Чтобы перейти в триггерный режим, нужно замкнуть контакты кнопочного выключателя SB2. В этом случае при превышении током нагрузки установленного значения откроется транзистор VT2 и на инвертирующий вход ОУ DA1 поступит напряжение — 8 В. На выходе ОУ будет установлено напряжение около +6 В, транзистор VT1 полностью откроется, выходное напряжение источника станет близким к нулю. Светодиод в этом режиме сигнализирует о срабатывании защиты. Чтобы вернуть источник в рабочий режим, достаточно на короткое время перевести защиту в режим ограничения тока. При указанных на схеме номиналах резисторов R4-R6 порог её срабатывания можно регулировать от 20 мА до 2 А. Чтобы изменить этот интервал, подбирают упомянутые резисторы.
Цепь R11C7 служит для предотвращения самовозбуждения ОУ. Хотя полностью устранить его, скорее всего, не удастся, цепь R11C7 значительно уменьшает амплитуду высокочастотного переменного напряжения на выходе ОУ. Чтобы генерация не влияла на работу остальных узлов, сигнал с выхода ОУ подан на базу транзистора VT1 через фильтр R2C1. Резистор R1 в цепи эмиттера VT1 создаёт местную отрицательную обратную связь по току.
Устранить самовозбуждение поможет и шунтирование участка коллектор-эмиттер транзистора VT1 (рис. 5 в [1]) конденсатором ёмкостью 4,7 мкФ на напряжение 63 В. О том, что самовозбуждения нет, косвенно свидетельствует отсутствие акустического шума источника. А самовозбуждение сопровождают характерные звуки, хорошо воспринимаемые на слух. В любом случае следует проконтролировать осциллографом размах пульсаций выходного напряжения в режиме ограничения тока и, подбирая корректирующие цепи, минимизировать его. Возможно, потребуется стабилизировать напряжения питания ОУ.
Следует отметить, что применение цепи R11C7 и резистора R1 требуется далеко не всегда. В одном из экземпляров устройства защиты их вообще не пришлось устанавливать, хотя амплитуда пульсаций частотой более 200 кГц на выходе ОУ DA1 достигала 100 мВ. Критерием служит амплитуда пульсаций на выходе источника. Если при его работе в режиме ограничения тока она не превышает 10. 15 мВ, работу узла защиты можно считать удовлетворительной, поскольку такой режим в большинстве случаев считается аварийным.
Цепь R11C7 и резистор R1 можно не устанавливать и в том случае, если работа источника в режиме ограничения тока не предполагается, а требуется только триггерный режим. В этом случае коллектор транзистора VT2 следует соединить с выводом 2 DA1 напрямую, а выключатель SB2 заменить переключателем, включив его в разрыв провода, соединяющего резистор R9 с выводом 3 DA1 по схеме, изображённой на рис. 2. При выключенной триггерной защите выходной ток источника [1] будет ограничен на уровне около 2,5 А.
Рис. 2. Схеме соединения резистора R9 с выводом 3 DA1
Поскольку при токе нагрузки, равном пороговому, напряжения на входах ОУ равны, чтобы определить порог срабатывания защиты, достаточно измерить напряжение на движке переменного резистора R5 относительно минусового провода нагрузки. Чтобы сделать это, в измерителе [2] следует разорвать цепь между выходом ОУ DA1 и резистором R10 и вывести провода на контакты переключателя SB1. Измерять ток защиты можно в любом режиме работы.
Питают устройство защиты от преобразователя напряжения, встроенного в измеритель [2]. Его мощности для этого достаточно. Конечно, лучший вариант — использовать вместо преобразователя дополнительные вторичные обмотки трансформатора питания с соответствующими выпрямителями и стабилизаторами.
Блок питания, построенный из узлов, описанных в [1] и [2], с предлагаемым устройством защиты не лишён недостатков. Во-первых, при его включении в сеть на выходе возникает импульс напряжения, амплитуда которого не превышает установленного выходного напряжения. Это следствие питания узла защиты от преобразователя напряжения. Он запускается позже источника питания, поэтому переходные процессы в узле защиты происходят с задержкой. В момент запуска преобразователя на выходе ОУ DA1 кратковременно появляется напряжение +6 В и транзистор VT1 открывается, что и вызывает появление импульса.
Другой недостаток обусловлен той же причиной, что и первый, но проявляется при включённом режиме триггерной защиты. При подаче питания появляется импульс напряжения, амплитуда которого не превышает установленного выходного напряжения, а затем источник выключается. Если питать узел защиты и измеритель от дополнительных обмоток сетевого трансформатора, эти эффекты проявляются в меньшей степени.
Чтобы устранить влияние этих недостатков, можно просто не включать триггерный режим и не подключать нагрузку, пока выходное напряжение блока не установится. Но полностью избавиться от них поможет цепь, схема которой показана на рис. 3. В момент включения блока в сеть конденсатор С9 разряжен, через диод VD1 на неинвертирующий вход ОУ DA1 поступает отрицательное напряжение, поэтому импульс на его выходе не появляется. По мере зарядки конденсатора напряжение на нём плавно нарастает. Когда оно станет больше, чем на входе ОУ, диод VD1 будет закрыт, а конденсатор С9 через резистор R12 зарядится до суммарного напряжения на выходах преобразователя (16 В) и перестанет влиять на дальнейшую работу устройства. Диод VD2 служит для ускорения разрядки конденсатора С9 при выключении питания. Постоянную времени цепи С9R12 следует подобрать минимальной, при которой триггерная защита не срабатывает в момент включения источника в сеть.
Рис. 3. Схема цепи
Печатная плата для узла защиты не разрабатывалась. При оснащении блока питания [1] этим узлом следует вместо переменного резистора R11′ (рис. 3 в [1]) установить постоянный номиналом 3,6 кОм, а резистор R11» исключить.
В блоке защиты применены резисторы МЛТ и импортные оксидные конденсаторы. Переменный резистор — СП3-40. Транзисторы КТ3102Е можно заменить на SS9014, а вместо ОУ КР140УД708 применить импортные аналоги или другие отечественные ОУ, например КР1408УД1А. Следует отдавать предпочтение ОУ с низкой скоростью нарастания выходного напряжения.
1. Герасимов Е. Лабораторный блок питания из БП матричного принтера. — Радио, 2016, №7, c. 24-26.
2. Герасимов Е. Измеритель напряжения и тока. — Радио, 2016, № 5 c. 29-31.
Автор: Е. Герасимов, станица Выселки Краснодарского края
Мнения читателей
Нет комментариев. Ваш комментарий будет первый.
Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:
Блок питания с токовой защитой
В радиолюбительской практике порой требуется блок питания, в котором имеется возможность регулировать не только выходное напряжение, но и порог срабатывания защиты от токовой перегрузки.
Во множестве простых устройствах, подобной защиты нет, в лучшем случае там ограничивается лишь максимальный ток нагрузки, причем возможность регулировки либо отсутствует вовсе либо затруднена. Подобная защита скорее предназначена для блока питания, чем для нагрузки. Для безопасной работы источника и нагрузки, требуется возможность регулировки уровня срабатывания токовой защиты в различных пределах. В случае ее срабатывания, нагрузка должна быть автоматически отключена, предлагаемое же устройство, отвечает всем заявленным выше требованиям.
На входе блока питания напряжение составляет 26…29 В, а на выходе получается от 1 до 20 В, ток срабатывания защиты 0,03…2 А.
Как становиться понятным по схеме, регулируемый стабилизатор напряжения собран на операционном усилителе DA1.1. На неинвертирующий вход усилителя (вывод 3) поступает образцовое напряжение с движка переменного резистора R2, за стабильность которого отвечает стабилитрон VD1, а на инвертирующий вход (вывод 2) напряжение поступает с эмиттера транзистора VT2 через делитель напряжения R11R7. ООС поддерживает равенство напряжений на входах ОУ, компенсируя влияние дестабилизирующих факторов. Вращая движок переменного резистора R2, можно изменять выходное напряжение.
Блок защиты от перегрузок по току выполнен на операционном усилителе DA1.2, который включен как компаратор, он сравнивает напряжения на инвертирующем и неинвертирующем входах. На неинвертирующий вход через резистор R14 поступает напряжение с датчика тока нагрузки, резистора R13, на инвертирующий — образцовое напряжение, за стабильность которого отвечает диод VD2, который выполняет функцию стабистора с напряжением стабилизации около 0,6 В. В случае пока падение напряжения создаваемое током нагрузки на резисторе R13, меньше образцового, напряжение на выходе (вывод 7) ОУ DA1.2 близко к нулю.
В том случае, если ток нагрузки превысит допустимый, напряжение на выходе ОУ DA1.2 возрастет практически до напряжения питания. Затем через резистор R9 ток потечет дальше и включит светодиод HL1 попутно открывая транзистор VT1. Диод VD3 откроется и через резистор R8 замкнет цепь положительной обратной связи. Открытый транзистор VT1 подключает параллельно стабилитрону VD1 резистор малого сопротивления R12, в следствии чего его выходное напряжение уменьшится практически до нуля, так как транзистор VT2 закроется и отключит нагрузку. Но несмотря на то, что напряжение на датчике тока упадет до нуля, нагрузка благодаря действию положительной обратной связи останется отключенной, что инициирует горящий светодиод HL1. Повторно включить нагрузку возможно, кратковременно отключая питание или нажимая на кнопку SB1. Диод VD4 служит для защиты эмиттерного перехода транзистора VT2 от обратного напряжения, с конденсатора С5 при отключении нагрузки, попутно обеспечивая разрядку этого конденсатора через резистор R10 и выход ОУ DA1.1.
Транзистор КТ315А (VT1) можно заменить на КТ315Б-КТ315Е, а VT2 на — любой из серий КТ827, КТ829. Стабилитрон (VD1) можно использовать любой, с напряжением стабилизации 7…8 В и током 3…8 мА. Диоды КД521В (VD2-VD4) хотя можно применить и другие из этой серии или КД522Б. Конденсаторы С3, C4 — пленочные или керамические. Оксидные конденсаторы: C1 — К50-18 или аналогичный импортный, остальные — из серии К50-35. Номинальное напряжение конденсаторов не должно быть меньше, чем указанно на схеме. Постоянные резисторы серии МЛТ, переменные — СП3-9а. Резистор R13 можно составить из трех параллельно соединенных МЛТ-1 сопротивлением по 1 Ом.
Налаживание блока питания начинают с измерения напряжения питания на выводах конденсатора C1, которое, с учетом пульсаций, должно находиться в пределах, которые указаны на схеме. Затем движок переменного резистора R2 перемещают в верхнее по схеме положение и, измеряют максимальное выходное напряжение, устанавливают его равным 20 В, подбирая резистор R11. После этого подключают к выходу эквивалентную нагрузку и производят замеры минимального и максимального тока срабатывания защиты. А чтобы свести к минимуму уровень срабатывания защиты, необходимо сопротивление резистора R6 уменьшить. Для увеличения максимального уровня срабатывания защиты нужно уменьшить сопротивление резистора R13 — датчика тока нагрузки.
Защита от КЗ для блока питания своими руками
Иногда при наладке самодельных электронных устройств получается короткое замыкание, из за которого может выйти из строя блок питания. Поэтому у блока питания должна быть надежная защита от короткого замыкания, способная в нужный момент быстро отключить замкнувшую нагрузку и уберечь блок питания от поломки.
На этом рисунке изображена схема простого устройства предназначенного для надежной защиты блока питания от короткого замыкания.
Схема защиты блока питания от короткого замыкания
Принцип работы релейной защиты довольно простой. При подаче напряжения на схему в режиме ожидания загорается красный светодиод. После нажатии кнопки S1 ток поступает на обмотку реле, контакты переключаются и блокируют обмотку реле, таким образом схема переходит в рабочий режим, об этом сигнализирует загоревшийся зеленый светодиод, ток поступает на нагрузку. При возникновении короткого замыкания пропадает напряжение на обмотке реле, контакты его размыкаются, нагрузка автоматически отключается, загорается красный светодиод сигнализируя о срабатывании релейной защиты.
Схема предназначена для работы с постоянным выходным напряжением от 8 до 15 вольт, поэтому будет отлично работать с зарядным устройством из компьютерного блока питания, а также с любыми другими трансформаторными или импульсными блоками питания имеющими выходное напряжение в указанном диапазоне.
Данную схему можно считать универсальной, потому что её легко переделать под любое напряжение, достаточно всего лишь заменить реле под нужное вам напряжение, ну и конечно при необходимости подобрать резисторы R1 и R2 под установленные в схему светодиоды.
Печатная плата устройства защиты блока питания от короткого замыкания.
Печатная плата защиты блока питания от короткого замыкания
Посмотрим, как работает готовое устройство защиты блока питания от короткого замыкания. В дежурном состоянии после подачи питания, горит красный светодиод, нагрузка отключена.
Нажимаем кнопку и устройство перейдет в рабочий режим.
Загорелся зеленый светодиод, сигнализируя о подаче питания на нагрузку, в качестве нагрузки я использую обыкновенную 12 вольтовую лампочку.
С помощью отвертки замыкаю между собой центральный контакт с цоколем лампочки, получается короткое замыкание, мгновенно срабатывает защита от КЗ, нагрузка отключается, загорается красный светодиод своим светом сообщая о коротком замыкании.
Радиодетали для сборки
- Реле SRD-12VDC-SL-C, можно использовать аналогичное на другое напряжение
- Резисторы R1, R2 1K сопротивление подбирайте для каждого светодиода
- Светодиоды 5 мм 2 шт. красный и зеленый
- Кнопка любая без фиксации с нормально разомкнутыми контактами
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как сделать защиту от короткого замыкания для блока питания
Digitrode
цифровая электроника вычислительная техника встраиваемые системы
- Вычислительная техника
- Микроконтроллеры микропроцессоры
- ПЛИС
- Мини-ПК
- Силовая электроника
- Датчики
- Интерфейсы
- Теория
- Программирование
- ТАУ и ЦОС
- Перспективные технологии
- 3D печать
- Робототехника
- Искусственный интеллект
- Криптовалюты
Чтение RSS
Простая схема защиты от превышения тока на основе операционного усилителя
Схемы защиты жизненно важны для любого электронного прибора. Защита от перенапряжения, защита от короткого замыкания, защита от обратной полярности и т.д. – все это очень важно в электронике. В этой статье вы узнаете, как спроектировать и собрать простую схему защиты от перегрузки по току с использованием операционного усилителя.
Защита от превышения тока или перегрузки по току часто используется в цепях электропитания для ограничения выходного тока блока питания. Термин «Перегрузка по току» – это состояние, когда нагрузка потребляет большой ток, чем указанные возможности блока питания. Это может быть опасной ситуацией, поскольку состояние перегрузки по току может повредить источник питания. Поэтому инженеры обычно используют схему защиты от превышения тока для отключения нагрузки от источника питания во время таких случаев неисправности, таким образом защищая нагрузку и источник питания.
Существует много типов цепей защиты от перегрузки по току. Сложность схемы зависит от того, как быстро защитная цепь должна реагировать в ситуации перегрузки по току. В этом проекте мы создадим простую схему защиты от перегрузки по току с использованием операционного усилителя, который очень часто используется и может быть легко адаптирован для ваших проектов.
Схема, которую мы собираемся спроектировать, будет иметь настраиваемое пороговое значение максимального тока, а также функцию автоматического перезапуска при сбое. Поскольку это схема защиты от перегрузки по току на основе операционного усилителя, в качестве приводного устройства будет использоваться операционный усилитель. Для этого проекта используется ОУ общего назначения LM358. На рисунке ниже показана схема контактов LM358.
Как видно на изображении выше, внутри одного корпуса у нас будет два канала операционного усилителя. Однако для этого проекта используется только один канал. Операционный усилитель будет переключать (отключать) выходную нагрузку с помощью полевого транзистора (MOSFET). Для этого проекта используется N-канальный MOSFET IRF540N. Рекомендуется использовать надлежащий радиатор для MOSFET, если ток нагрузки превышает 500 мА. Однако для этого проекта MOSFET используется без радиатора. На изображении ниже представлена схема распиновки IRF540N.
Для питания операционного усилителя и схемы используется линейный стабилизатор напряжения LM7809. Это линейный стабилизатор напряжения на 9 В 1 А с широким номинальным входным напряжением. Распиновку можно увидеть на следующем изображении.
Простая схема защиты от превышения тока может быть разработана с использованием операционного усилителя для определения перегрузки по току, и на основании полученного результата мы можем управлять полевым транзистором для отключения / подключения нагрузки к источнику питания. Принципиальная схема этого проекта проста, и ее можно увидеть на следующем рисунке.
Как видно из принципиальной схемы, MOSFET IRF540N используется для управления нагрузкой как ВКЛ или ВЫКЛ во время нормального состояния и состояния перегрузки. Но прежде чем отключить нагрузку, важно определить ток нагрузки. Это делается с помощью резистора R1, который представляет собой шунтирующий резистор 1 Ом с номинальной мощностью 2 Вт. Этот метод измерения тока называется измерением тока с помощью шунтирующего резистора.
Во время включенного состояния MOSFET ток нагрузки протекает через сток MOSFET к истоку и, наконец, к GND через шунтирующий резистор. В зависимости от тока нагрузки шунтирующий резистор создает падение напряжения, которое можно рассчитать по закону Ома. Поэтому предположим, что для 1 А тока (тока нагрузки) падение напряжения на шунтирующем резисторе составляет 1 В при V = I x R (V = 1 A x 1 Ом). Таким образом, если это падение напряжения сравнивать с предварительно определенным напряжением с помощью операционного усилителя, мы можем обнаружить ток перегрузки и изменить состояние полевого транзистора, чтобы отключить нагрузку.
Операционный усилитель обычно используется для выполнения математических операций с напряжением, таких как сложение, вычитание, умножение и т. д. Поэтому в этой схеме операционный усилитель LM358 сконфигурирован как компаратор. Согласно схеме, компаратор сравнивает два значения. Первый из них является падение напряжения через шунт, а другой представляет собой предопределенное напряжение (опорное напряжение), используя переменный резистор или потенциометр RV1. RV1 действует как делитель напряжения. Падение напряжения на шунтирующем резисторе определяется инвертирующим выводом компаратора и сравнивается с опорным напряжением, которое подключено к неинвертирующему выводу операционного усилителя.
В связи с этим, если считанное напряжение меньше, чем опорное напряжение, компаратор будет производить положительное напряжение на выходе, которое близко к напряжению питания VCC компаратора. Но, если считанное напряжение больше, чем опорное напряжение, компаратор будет выдавать отрицательное напряжение питания на выходе (отрицательное питание подключено через GND, поэтому 0 В в данном случае). Это напряжение достаточно для включения или выключения MOSFET.
Но когда высокая нагрузка будет отключена от источника питания, переходные изменения создадут линейную область характеристики компаратора, и это создаст петлю (гистерезис), в которой компаратор не сможет правильно включить или выключить нагрузку, и операционный усилитель станет нестабильным. Например, предположим, 1 А устанавливается с помощью потенциометра для перевода полевого транзистора в состояние ВЫКЛ. Поэтому переменный резистор настроен на выход 1 В. В ситуации, когда компаратор обнаруживает, что падение напряжения на шунтирующем резисторе составляет 1,01 В (это напряжение зависит от точности операционного усилителя или компаратора и других факторов), компаратор отключит нагрузку. Переходные изменения происходят, когда высокая нагрузка внезапно отключена от блока питания, и это кратковременное повышение опорного напряжения, которое заставляет его работать в линейной области.
Лучший способ для решения этой проблемы заключается в использовании стабильного питания через компаратор, где переходные изменения не влияют на входном напряжение компаратора и источник опорного напряжения. В этой схеме это выполняется с помощью линейного стабилизатора LM7809 и с использованием гистерезисного резистора R4, резистора на 100 кОм. LM7809 обеспечивает надлежащее напряжение на компараторе, так что переходные изменения на линии электропередачи не влияют на компаратор. Конденсатор C1 на 100 мкФ используется для фильтрации выходного напряжения.
Гистерезисный резистор R4 подает небольшую часть входного сигнала на выход операционного усилителя, который создает разрыв напряжения между низким порогом (0,99 В) и высоким порогом (1,01 В), когда компаратор изменяет свое состояние выхода. Компаратор не изменяет состояние немедленно, если достигается пороговая точка, вместо этого, чтобы изменить состояние с высокого на низкое, уровень измеряемого напряжения должен быть ниже, чем нижний порог (например, 0,97 В вместо 0,99 В). или чтобы изменить состояние с низкого на высокое, измеренное напряжение должно быть выше верхнего порога (1,03 вместо 1,01). Это повысит стабильность компаратора и уменьшит ложные срабатывания. Кроме этого резистора, R2 и R3 используются для управления затвором. R3 – резистор затвора полевого транзистора.
Схема собрана на макетной плате и протестирована с использованием настольного источника питания и переменной нагрузки постоянного тока.
Схема была протестировано, в результате испытаний выход успешно отключался при различных значениях, установленных переменным резистором.
Схемы импульсных блоков питания на микросхемах IR2153
с устройством мягкого пуска и защитой от токовых перегрузок и КЗ. Двуполярный ИБП для питания усилителей, а так же лабораторный с регулируемым выходным напряжением.
— Интересно, а что можно увидеть, если низе́нько пролететь над глухим бурятским селением тарбагатайского района, вооружившись комплексом радиолокационного наблюдения?
— Что, что? Узкораспахнутые глаза нескольких офонаревших финно-угров, а так же электромагнитную мешанину помех в полосе частот 1. 100 МГц.
Железный конь пришёл на смену крестьянской лошадке! Энергосберегающие лампы, телевизоры, компьютеры, зарядные устройства и прочий хай-тек с импульсными источниками питания — на смену лампочке Ильича!
Вот и приходится бедолаге-радиолюбителю уживаться с разномастными ИБП, излучающими в эфир интенсивный высокочастотный шлак во всех КВ-диапазонах.
А что тут попишешь? Прогресс как-никак. технологичность, блин. массогабариты, мать их за ногу.
И чтобы не застрять на обочине инновационного пути, поклонимся и припадём к импульсным блокам питания и мы. А начнём с двуполярного импульсного источника для мощного усилителя мощности.
Что нужно правильному ИПБ для комфортного выполнения своих непосредственных обязанностей?
1. Мягкий, он же плавный, пуск при включении импульсного блока питания, предотвращающий превышение допустимых токов полупроводников от работы на фактически короткозамкнутую нагрузку, образующуюся вследствие мгновенного заряда ёмкостей выпрямителя.
Часто используемые для этих целей термисторы не так уж и хороши, в силу инерционной зависимости изменения сопротивления от температуры. Результат — кирдык блоку питания из-за того, что просто выключили и тут же включили БП тумблером.
2. Правильная и быстрая защита ИБП от токовых перегрузок и КЗ, полностью отключающая устройство от сети при возникновении нештатных ситуаций.
Распространённое шунтирование на землю точки питания микросхемы-драйвера, управляющего ключевыми транзисторами, может выручить далеко не во всех ситуациях. Слабым звеном здесь оказывается наличие электролитического конденсатора в цепи питания, приводящего к существенной задержке такого обесточивания микросхемы со всеми вытекающими невесёлыми последствиями.
3. Наличие входных и выходных LC-фильтров для предотвращения проникновения импульсных помех в сеть и нагрузку.
4. Компактность, надёжность и радующая глаз простота исполнения.
Тезисы оформлены без нарушений требований, переходим к схеме электрической принципиальной импульсного блока питания.
Рис.1
Начнём со схемы (Рис.1), обеспечивающей мягкий и плавный пуск ИБП. Она же является устройством защиты импульсного блока питания от токовых перегрузок и КЗ, она же содержит элементы, предотвращающие проникновение импульсных помех в питающую сеть, она же формирует необходимые постоянные напряжения, необходимые для работы драйвера и ключевых транзисторов.
— Так, а что там, собственно-то, осталось? С гулькин хрен! Надо ж было сразу всё рисовать, а не размножать всякие писульки! — резонно зафиксирует мысль подготовленный радиолюбитель.
Торопиться не надо!
Во-первых, приведённая схема сгодится не только для преобразователей, собранных на IR2153, но и для любых других устройств, независимо от используемой элементной базы. Низковольтное напряжение (15В) может быть выбрано любой величины, посредством замены D2 на стабилитрон с соответствующим напряжением пробоя.
Во-вторых, даже при изготовлении источника питания на заявленной в заголовке микросхеме IR2153, имеет серьёзный резон сначала собрать приблуду, приведённую на Рис.1, десяток раз проверить соответствие принципиальной схеме, прозвонить тестером на отсутствие КЗ между дорожками платы, далее, подключившись к сети, убедиться в наличии работоспособности, а затем уже продолжать все дальнейшие манипуляции.
Настройки схема не требует, при отсутствии ошибок сразу запашет как зверь!
А вот теперь можно повеселиться по полной программе! Любые дефективные двигания шаловливыми ручонками при сборке преобразователя, ключевых транзисторов и импульсного трансформатора будут моментально зафиксированы устройством защиты и не приведут к каким-либо серьёзным последствиям для элементов схемы. Ручонки могут пострадать, элементы — вряд ли!
Как это всё работает?
Переключатель S1 — это тумблер без фиксации, алгоритм работы (on)-off-(on), количество контактных групп — 2.
В момент перевода тумблера в состояние «вкл» через сопротивление R1 и двухполупериодный выпрямитель Br1 начинается заряд входного сглаживающего конденсатора C3.
Номинал резистора выбран такой величины, чтобы максимальный импульсный ток, протекающий через элементы в начальный момент включения, не превышал 10А.
По мере заряда конденсатора увеличивается и ток через последовательную цепочку R2, LED1, Ref1, D2. Через несколько десятков миллисекунд этот ток достигает значения, достаточного для включения реле Ref1. После включения реле, его контакты К1 замыкают и R1, и контакты тумблера. Всё — плавный пуск импульсного блока питания завершён, светодиод горит, можно отпускать пипку переключателя.
Выключение блока питания у нас завязано на схеме защиты, реализованной на транзисторах Т1, Т2, включённых по схеме эквивалента тиристора. Какой должна быть эта схема для предотвращения ложных срабатываний, мы подробно рассмотрели на странице Ссылка на страницу .
Схема обладает небольшим и предсказуемым током включения (около 100мкА), что позволяет отказаться от построечных резисторов при выборе необходимого порога срабатывания. Величина сопротивления R=R6IIR7 выбирается исходя из формулы R=0,77/Iср, т.е. в нашем случае Iср=0,77/0,5=1,54А.
Механизмы выключения ИБП — что при нажатии кнопки S1 в положение «выкл», что при срабатывании защиты абсолютно идентичны. Под воздействием напряжения, превышающем пороговый уровень на переходе база-эмиттер транзистора Т1, аналог тиристора переходит в проводящее состояние, верхний вывод реле замыкается на нулевую точку, реле отщёлкивается, блок питания от сети полностью отключается.
П-образный фильтр С1, Др1, С2 служит для предотвращения проникновения импульсных помех в сеть. Я использовал готовый 2х2.2мГн, 2A фирмы Epcos, позволяющий работать с мощностями до 600Вт. Если не влом заняться самообразованием, то можно намотать и самостоятельно на Amidon-овских кольцах их карбонильного железа марок: 26, 38, 40, 45, 52. Всю необходимую информацию можно найти на сайте производителя.
Диодный мост должен быть рассчитан на постоянное обратное напряжение не менее 400В, у меня под рукой оказалась радиодеталь с большим запасом по мощности — BR1004 на 10А.
Реле должно выдерживать необходимый максимальный коммутируемый ток и не гнушаться работой с сетевым напряжением. Ток срабатывания не должен превышать 20мА, как правило в документации такие реле называются — High Sensitive. У меня выбор пал на NRP05-A-12D, 12V / 5A, 250VAC.
Ограничений по максимальной мощности импульсного блока питания у приведённой схемы защиты и плавного пуска — нет. Естественным образом следует озаботиться выбором элементов Др1 и Br1, соответствующих максимальным токам, гуляющим по высоковольтным цепях устройства.
Принято считать, что минимальная величина ёмкости электролитического конденсатора С3 должна составлять 100МкФ на каждые 100Вт мощности. Увеличение этого значения в 1,5 — 2 раза, пойдёт только на пользу характеристикам ИБП, хотя и излишний фанатизм не приветствуется во избежание чрезмерного увеличения массогабаритных характеристик.
Стабилитрон D1 я пририсовал на схеме на всякий пожарный уже в процессе написания статьи для исключения возможного включения реле обратным напряжением, накопленным на С4 в момент срабатывания транзисторной защёлки. В оригинале всё прекрасно работает и без него!
Что-то, как-то слишком многословно получилось.
«Краткость есть душа ума. ». Ну да ладно, продолжим разговор на следующей странице.