Защита от импульсных перенапряжений схема подключения
Схемы подключения УЗИП для частного дома
Для предохранения электрического и электронного оборудования от удара молнии предназначена система устройств защиты от импульсных перенапряжений (УЗИП). Схема подключения в частном доме осуществляется с целью безопасности или бесперебойности ее работы. В первом случае происходит полное отключение потребителей, а во втором — обеспечивается безопасная их работа.
- Типы импульсных перенапряжений
- Первичные средства
- Классификация УЗИП
- Схемы подключения
- Внешняя система
- Установка защиты на ответвлении
Типы импульсных перенапряжений
Напряжение молнии исчисляется десятками, а иногда сотнями тысяч вольт. Поэтому за короткий период она наносит немалый вред, выводя из строя бытовую технику. У холодильников ломается компрессорный двигатель, в блоках питания выгорает первичная цепь преобразователя и т. д.
Большую опасность представляет в этот момент перенапряжение в электрической цепи, так как появляется высокая вероятность возникновения пожара. Причины возникновения скачков напряжения:
Молнию характеризует стремительный импульс, который пробивает сеть, так как его мощность в несколько раз превышает значение у проводников. Он попадает в электрическую линию, а затем и оборудование внутри дома, и выражается отношением амплитуды напряжения в 10 кВ к длительности ее протекания — 350 мкс.
- К перенапряжению приводят неисправности в электрических цепях, вызванные коммутационными процессами. Это может быть результатом аварии на электростанции или при переключении с одного генератора на другой. В этот момент во вторичной сети может возникнуть мощный импульс, который наносит вред, соизмеримый с молнией.
Перенапряжение характеризуется как аварийное состояние системы во время генерации электрической энергии. Поэтому чтобы защитить электрооборудование от возникновения негативных импульсов, устанавливают УЗИП для частного дома.
Первичные средства
Монтаж устройств защиты от импульсных перенапряжений считается только частью процедуры по защите от возникновения очагов пожара или выхода из строя электрического оборудования. Предварительно следует обеспечить первичные средства защиты от воздействия молнии. В их число входят:
Вокруг частного дома следует провести металлическую шину и замкнуть ее, что послужит в качестве заземления по всему периметру.
- К пластинам подключаются молниеотводы по краям дома.
- На крыше монтируется основной громоотвод. Если конструкция получается чересчур большой, то громоотводы разделяются на несколько элементов.
- Особенно это касается частных домов с металлической крышей, если рядом с ней проходит электрическая сеть.
Кроме воздействия импульсов от молний, следует учесть другие возможности проникновения помех внутрь дома. Резкое повышение напряжения может произойти в период подключения высоковольтных устройств на подстанции.
Импульс проникает через телевизионный кабель и попадает в телевизор, который скорей всего выйдет из строя. Такая же ситуация может возникнуть с интернет-кабелем, перенапряжение по которым приводит в негодность персональный компьютер. В сложных ситуациях может возникнуть очаг возгорания.
Чтобы воспрепятствовать этим негативным явлениям, следует все линии и оборудование подключить к заземляющему контуру, а во время молний полностью их обесточивать. Вручную это обеспечить практически невозможно, поэтому существует автоматическая защита низковольтных сетей.
Классификация УЗИП
Существует 3 класса разновидности устройств защиты от импульсных перенапряжений. Класс 1 обладает способностью пропустить через себя и выдержать всю энергию от молнии. Устанавливаются такие приборы в сельской местности с воздушными электрическими линиями. Кроме того, рекомендуется их монтаж в домах с громоотводами или зданиях, расположенных рядом с высокими объектами. В квартирах или административных помещениях такие устройства не устанавливаются.
Прибор 2 класса не применяется без первого устройства, так как он не способен выдержать мощность удара молнии. Его эффективность проявляется только при совместном применении.
Устройство 3 класса не используется без двух предыдущих приборов и устанавливается оно непосредственно перед потребителем. К такому типу относится сетевой фильтр или защита в блоках питания некоторых бытовых агрегатов.
Схемы подключения
Для защиты низковольтных сетей существует несколько схем подключения УЗИП. Идеальным вариантом считается комплексное применение устройств, так как удар молний абсолютно не прогнозируем.
Внешняя система
Внешний элемент защиты принимается из расчета, что по его компонентам возможно протекание максимального тока. Защитное устройство устанавливается с возможностью выдержать 100 кА. Чтобы негативный импульс не причинил много бед, его следует отвести по пути наименьшего сопротивления.
Для этого в электрическом щите устанавливается комплексный УЗИП, включающий в себя три степени защиты. Это устройство обладает большой мощностью и скоростью срабатывания, предохраняя оборудование общей мощностью до 20 кВт.
Непосредственно схема его подключения зависит от типа контура заземления.
Если это разделенное на два участка заземление, то в щитке монтируются две отдельные шины: нулевая, заземляющая. Между ними устанавливается перемычка, которая считается дополнительной защитой.
Установка защиты на ответвлении
Возможна установка УЗИП не в распределительном щитке, а непосредственно на ответвлении электрической сети. Например, где воздушная линия расходится на два соседних дома, а контур заземления не обладает молниеотводами.
Иногда устройство устанавливается перед входом в дом и применение УЗИП с 3 классом защиты нерационально. Монтируются приборы, обладающие 1 и 2 классом. Если расстояние от столба до дома превышает 60 м, то в электрическом щитке устанавливается дополнительное устройство со 2 классом защиты.
Отличается способ установки защиты, если дом подключен к подземному кабелю. Аварийная ситуация возникает от других внешних источников, поэтому длительность импульсных помех будет намного меньше. Для защиты достаточно будет установить в распределительный щит УЗИП 2 класса.
Кроме электрических линий, перенапряжение может возникнуть в телевизионных сетях. Часто высоковольтные помехи генерируются на антенных приемниках в домах, где нет молниеотводов. Возникновение кратковременного высокого напряжения в антенном кабеле приводит к выходу из строя селектора телевизора.
Устройство защиты представляет собой антенный переходник с заземляющим устройством. Существуют два типа приборов: для аналогового, спутникового или цифрового телевидения. Различить их можно по соответствующим надписям на корпусе: Radio/TV, SAT.
Сетевой кабель интернет также обладает защитным устройством, которое устанавливается при вводе провода в здание.
Сборка щита учета с УЗИП и УЗО, заземление TN-C-S
Использование в щите учета частного дома Устройства Защиты от Импульсных Перенапряжений — УЗИП, позволяет значительно обезопасить жилище. Защитить электрооборудование, предотвратить возможное возникновение пожара.
В отличии от многоквартирного, частный дом значительно чаще страдает от воздействий кратковременных высоких напряжений. Например, при ударе молнии, коротком замыкании или включении в сеть мощных потребителей. Именно для таких случаев и используется УЗИП, оно не пропускает высокое напряжение, переводя его на контур заземления.
Из-за своего принципа работы или возможного брака оборудования, при сработке УЗИП – при улавливании высокого напряжения, оно разрушится, нередко его просто разрывает.
При этом, как и при взрыве, выделяется тепло, летят искры. Случись это внутри помещения, например, в распределительном щитке (РЩ), вероятность возникновения пожара очень велика. А если это произойдёт в щите учета, установленном на улице, за пределами жилища, большая вероятность потерять лишь электрощит, избежав серьезных последствий.
Ранее, мы уже рассмотрели все основные схемы монтажа учетных электрощитов 380В, для выделенной мощности 15кВт, в том числе и с УЗИП. При этом, для разных заземлений, подключения отличаются.
В этой статье, мы рассмотрим сборку щита учета электрической энергии частного дома с УЗИП и УЗО, при заземлении TN-C-S.
Вариант для системы ТТ – смотрите ЗДЕСЬ.
Сейчас же перейдём к самой схеме:
Щит учета частного дома с УЗИП при системе заземления TN-C-S
Чаще всего защиту от импульсных перенапряжений разумнее всего подключать сразу после вводного автомата, параллельно остальной нагрузке.
Мы рассмотрим пошаговую схему сборки такой схемы электрощита, где, для обеспечения максимальной защиты дома, используется и УЗИП и селективное противопожарное Устройство Защитного Отключения.
1. В первую очередь в электрощит устанавливается всё модульное оборудование.
Важно при этом не забыть, что всё, что стоит до счетчика электрической энергии, обязательно необходимо защитить от возможности несанкционированного подсоединения и кражи электроэнергии.
Обычно для этого монтируется пластиковый бокс, который имеет возможность пломбировки.
Именно в него устанавливается и вводной автоматический выключатель и Устройство защиты от импульсных перенапряжений
В данной сборке используется:
1) Стальной электрический щит (степень защиты ip54 или выше)
2) Бокс/кожух для установки вводного АВ на 3 модуля
3) Автоматический выключатель трехполюсный 25А
4) Трехфазный счетчик электрической энергии 380В
5) распределительный блок на DIN-рейку
6) Селективное УЗО от 40А, ток утечки 100мА или 300мА
7) Бокс/кожух для установки вводного АВ на 4 модуля (в зависимости от типа УЗИП)
8) Устройство Защиты от Импульсных Перенапряжений — УЗИП
Разводка проводов внутри щита и их подключение
Вводные проводники – СИП
В первую очередь подключаются провода с большим сечением, в нашем случае это ввод — СИП 4 х 16мм.кв.
Для системы TN-C-S они должны подсоединяться в следующем порядке:
Фазные проводники – с желтой, зеленой и красной полосой, к верхним контактам главного автомата, а провод с синей маркировкой – PEN, к распределительному блоку.
Соединение контура заземления с УЗИП при TN-C-S
Следующим шагом подключаем все защитные заземления. Провод идущий от контура дома 1х10мм.кв. заводится в распределительный блок. Затем от него, такой же провод прокладывается до соответствующей клеммы Устройства защиты от перенапряжений, со знаком заземления. А также заземляется корпус щита как показано на изображении ниже:
Соединение вводного автомата со счётчиком электрической энергии
Теперь можно соединять вводной автоматический выключатель и электросчётчик. Для этого три фазы, пробрасываются до соответствующих клемм счётчика. Схема и порядок подсоединения для трехфазного счётчика – подробно рассмотрена нами ранее ЗДЕСЬ.
Ноль прокинут до распределительного блока.
Подключение УЗИП в щите учета
От нижних клемм главного автоматического выключателя, где уже есть провода, идущие в счетчик, прокладываются фазные проводники к контактам устройства защиты от импульсных перенапряжений.
Нулевой проводник к клемме «N», подводится от распределительного блока. Как показано на изображении ниже:
Далее соединяется противопожарное селективное УЗО, с выводными клеммами электросчётчика.
При этом задействовано 4 провода — фазы и ноль.
Важно запомнить, что после УЗО соединять где-то в схеме НОЛЬ и ЗАЗЕМЛЕНИЕ уже нельзя.
Кабель идущий в Распределительный щиток дома
Финальный шаг – к нижним контактам Устройства Защитного Отключения, подсоединяются жилы кабеля, идущего в РЩ дома.
Фазные и нулевая жила, как показано выше, подсоединяются к УЗО снизу, при этом голубой — ноль, к контакту со маркировкой «N».
А вот заземление – желто-зеленая жила, цепляется к распределительному блоку.
На этом всё, сборка щита учета частного дома с защитой от импульсных перенапряжений – УЗИП, завершена. Теперь можно вызвать представителей энергосбытовой компании, чтобы они опечатали ВРУ и вы смогли им полноценно пользоваться.
Устройства защиты от перенапряжений (УЗИП)
Устройства защиты от импульсных перенапряжений (УЗИП) Easy9 являются одним из продуктов в новой линейки защитной и коммутационной аппаратуры Easy9 от признанного лидера на мировом рынке электротехники — компании Schneider-Electric. Наряду с устройствами защиты от импульсных перенапряжений в новую линейку Easy9 входят:
УЗИП Easy9 предназначены для защиты от повреждения грозовым разрядом любых чувствительных к перенапряжению устройств, в частности электронного и IT оборудования: телевизоров, компьютеров, мониторов, принтеров, модемов, бытовых электроприборов с электронными контроллерами, телефонов, факсов, систем охранной сигнализации и т. д.
Устройства защиты от импульсных помех срабатывают за миллиардную долю секунды и надежно защищают оборудование от бросков напряжения, дифференциальных перенапряжений и высокочастотных помех, вызванных ударом молнии или коммутационным перенапряжением. УЗИП применяются во вводно-распределительных устройствах, главных распределительных щитах, местных распределительных щитках, распределительных коробках или непосредственно в оборудовании.
Основные особенности устройств защиты от импульсных перенапряжений Easy9:
Окошко-индикатор состояния работоспособности УЗИП позволяет легко убедиться в полной работоспособности аппарата;
Удобная двухпозиционная защелка делает монтаж/демонтаж УЗИП Easy9 гораздо проще, удобнее и быстрее;
Высокое быстродействие. УЗИП срабатывает за миллиардную секунду.
Функции устройств защиты от импульсных перенапряжений Easy9:
Грозовой разряд вблизи от дома или рядом с воздушной линией электропитания вызывает резкое повышение напряжения питающей сети до 10 или 50 кВ вместо 230 В.
Импульс перенапряжения, длящийся несколько микросекунд, может вывести из строя различные электронные компоненты: запоминающие устройства, процессоры, конденсаторы, дисплеи, телевизоры, компьютеры, мониторы, принтеры, модемы, бытовые электроприборы с электронными контроллерами, телефоны, факсы, системы охранной сигнализации и т. д.
УЗИП ослабляет скачок напряжения до значения, выдерживаемого подключёнными приборами (макс.: 1,3 или 1,5 кВ, см. значения уровня защиты от перенапряжений (Up)).
Длительность этого импульса остающегося напряжения естественным образом ограничено несколькими микросекундами (значение типичной волны, указанное в электротехнических стандартах, составляет 1,2/50 мкс).
Устройство защиты от импульсных помех, установленное в распределительном щите, обеспечивает эффективную защиту всех устройств, расположенных в радиусе до 30 метров.
Технические характеристики устройств защиты от импульсных перенапряжений Easy9:
Наименование параметра | Значение параметра | |
Основные характеристики | ||
Максимальное напряжение сети | L1/N | 230 VAC |
L1/L2 | 400 VAC | |
Номинальная частота | 50 Гц | |
Степень защиты | Открытый аппарат | IP20 |
В модульном шкафу | IP40 | |
Температура эксплуатации | От -5 до +70 °C | |
Температура хранения | От -5 до +60 °C | |
Подключение | ||
Жесткие медные кабели | 5…35 мм 2 | |
Гибкие медные кабели | 5…35 мм 2 | |
Длина снятия изоляции с кабеля | 16 мм |
Выбор устройств защиты от импульсных перенапряжений Easy9:
По количеству полюсов:
Для однофазной сети с системой заземления TT (1) или TN-S (2) необходимо выбрать УЗИП 1 полюс + нейтраль.
Для трехфазной сети с системой заземления TT или TN-S (2) необходимо выбрать УЗИП 3 полюса + нейтраль.
Для трехфазной сети с системой заземления TN-C (3) необходимо выбрать 3-х полюсное УЗИП.
УЗИП устанавливается на вводе распределительного щита и подключается ко всем токоведущим проводникам (все фазы + нейтраль) и к защитному проводу заземления.
По максимальнму току разряда (Iмакс.)
20 кА обеспечивает хорошую защиту при длительном сроке службы для подавляющего большинства видов применения.
УЗИП с максимальным током разряда 40 кА рекомендуется использовать при повышенном уровне риска и в районах с высокой грозовой активностью:
Местность, где бывает более 40 грозовых разрядов на квадратный километр в год (см. карту);
Горная или влажная местность;
Здания и/или линии электропитания, расположенные на плоской безлесной местности.
(1) — TT это система заземления при, которой нейтраль источника питания глухо заземлена, а открытые токопроводящие части оборудования присоединены к заземлителю, электрически независимому от заземлителя нейтрали источника питания.
(2) — TN-S это система заземления при, которой нейтраль источника питания глухо заземлена, а открытые токопроводящие части оборудования присоединены к нейтрали источника питания. Нулевой рабочий (N) и нулевой защитный (PE) проводники работают раздельно по всей системе.
(3) — TN-C это система заземления при, которой нейтраль источника питания глухо заземлена, а открытые токопроводящие части оборудования присоединены к нейтрали источника питания. Нулевой рабочий (N) и нулевой защитный (PE) проводники объединены в одном проводе по всей системе.
Таблица выбора устройств защиты от импульсных перенапряжений Easy9:
Параметр | Значение параметра | |||
Фото | ![]() | ![]() | ![]() | |
Артикул | EZ9L33620 | EZ9L33345 | EZ9L33720 | EZ9L33745 |
Число полюсов | 1 полюс + нейтраль | 3 полюса | 3 полюса + нейтраль | |
Максимальный ток разряда (Iмакс.) | 20 кА | 20 кА | 20 кА | 45 кА |
Номинальный ток разряда (In) | 10 кА | 10 кА | 10 кА | 20 кА |
Уровень защиты от перенапряжений (Up) | 1,3 кВ | 1,3 кВ | 1,3 кВ | 1,5 кВ |
Кол-во модулей Ш=18 мм | 2 | 3 | 4 |
Стандарт о защите электроустановок от грозовых и коммутационных перенапряжений ГОСТ Р 50571.20—2000
Установка УЗИП обязательна:
Во всех зданиях с молниеотводами;
Во всех зданиях, электроснабжение которых полностью или частично осуществляется по воздушным линиям и которые расположены в местности, где бывает более 20 часов с грозой в год на квадратный километр. (см. карту).
Схемы подключения устройств защиты от импульсных перенапряжений Easy9:
Сеть: одна фаза
Система заземления: TT или TN-S
Сеть: три фазы
Система заземления: TT или TN-S
Сеть: три фазы
Система заземления: TN-C
Защита от импульсных перенапряжений схема подключения
Подключение УЗИП в цепь питания 220/380 В.
Так как существуют различные схемы электропитания по переменному току с различными режимами нейтрали, то используются и определённые схемы подключения УЗИП (ОПН) для осуществления наилучшей защиты электронных приборов и устройств от импульсных перенапряжений.
Наиболее распространённой на сегодня системой, особенно в быту, является однофазная система переменного тока с совмещенной нейтралью типа TNC. В такой системе применяется два проводника – фаза (L) и PEN проводник. В результате для защиты от импульсных перенапряжений применяется наиболее простой УЗИП, который состоит из одного блока. Подключается такой УЗИП так как указано на Рис.1. Нередко такая схема обозначается как (1+0).
Рисунок 1
На вновь строящихся объектах с однофазной системой питания, применяется система типа TNS. В такой системе применяется уже три отдельных проводника – это:
Электрический ток проходит только по двум проводникам – фазному (L) и нейтральному (N), а земляной проводник (PE) необходим для защитных функций. Для защиты аппаратуры при данной системе электропитания используется УЗИП, который состоит из двух модулей. Подключение защитного устройства будет происходить по схеме – (1+1) или (2+0). Подключение по схеме (1+1) показано на Рис.2. Подключение по схеме (2+0) показано на Рис.3.
Рисунок 2 Рисунок 3
Данная схема предполагает наличие одного ограничительного элемента между фазным проводником (L) и нейтральным (N), а второго между нейтральным (N) и земляным (PE). Обычно между фазным проводником и нейтральным используется варистор, а между нейтральным и земляным – разрядник. Это обусловлено характерными особенностями данных элементов. Варистор не имеет сопровождающего тока, поэтому они устанавливается между фазным и нейтральным проводниками. Разрядник который, установливается между глухозаземленным нейтральным (N) проводником и земляным (PE), принципиально не может иметь сопровождающего тока. К тому же, уровень защиты «(L) –(N)» будет лучше, чем «(L)-(PE)».
В схеме (2+0) применяется два защитных элемента, включенных параллельно и присоединенных к земляному проводнику. Данное подсоединение гарантирует наилучшую защиту от импульсных перенапряжений, которые возникают между проводниками фазы (L), нейтрали (N) и земли (PE). Необходимую схему защиты конкретного электронного оборудования выбирают в зависимости от разных факторов, которые будут рассмотрены в отдельной статье.
В промышленности чаще всего используется трёхфазная система питания с режимами нейтрали типа TNC или TNS.
В случае с режимом нейтрали TNC применяются четыре проводника – три фазных проводника L1, L2, L3 и совмещённый проводник PEN. Схема подключения УЗИП к данной системе электропитания показана на Рис.4. На схеме видно подключение защитных элементов УЗИП между фазными проводниками и PEN проводником. Для эффективной работы УЗИП требуется осуществить вторичное заземление PEN провода на входе в электроустановку.
Рисунок 4
В режиме нейтрали TNS применяются пять проводников – три фазных проводника L1, L2, L3, рабочая нейтраль N и земля PE. Схемы подключения УЗИП к данной системе электропитания имеют два варианта. Это схема (4+0) (Рис.5) и схема (3+1) (Рис.6). Схема (4+0) применяется в основном для защиты от импульсных перенапряжений, которые возникают между фазными проводами и землей (PE). Защита «(L) –(N)» здесь несколько хуже, так как в этом случае величина остаточного напряжения составляет уже сумму падений напряжений на каждом из варисторов.
Рисунок 5 Рисунок 6
При использовании схемы (3+1), изображенной на Рис.6, ситуация несколько иная. Здесь обеспечивается наилучшая защита относительно нейтрали. В то же время защита «фаза-земля» хуже за счет того, что импульс тока проходит последовательно через два защитных элемента – варистор и разрядник. Но учитывая, что электронное оборудование гораздо чувствительнее к перенапряжениям относительно нейтрали (фаза-нейтраль), чем относительно земли (заземленного корпуса защищаемого устройства), то схема (3+1), чаще всего, является предпочтительнее.
Существуют и некоторые другие системы электроснабжения и режимы нейтрали, например: двухфазные, с изолированной нейтралью (IT) или с независимой местной системой заземления (ТТ). Но такие системы используются сравнительно редко и требуют отдельного рассмотрения.
Устройство защиты от импульсных перенапряжений (УЗИП) для частного дома
Импульсным перенапряжением называется кратковременное резкое возрастание напряжения в электрической сети. Несмотря на то, что длится этот скачок совсем недолго (доли секунды), он чрезвычайно опасен как для линии, так и для подключенных к ней потребителей энергии. Чтобы не допустить повреждения кабеля и электрических приборов, используют устройства защиты от импульсных перенапряжений. В этом материале мы поговорим о том, что представляют собой эти приборы, каких видов они бывают, а также рассмотрим, как подключаются УЗИП для частного дома.
Причины возникновения импульсного перенапряжения
ИП может происходить как по технологическим, так и по природным причинам. В первом случае резкий перепад разности потенциалов происходит, когда на трансформаторной подстанции, откуда идет питание конкретной линии, возникает коммутационная перегрузка. Импульсное перенапряжение, вызванное природными причинами, случается, когда во время грозы мощный разряд бьет в молниезащиту сооружения или линию электрической передачи. Независимо от того, чем вызван скачок напряжения, он может быть очень опасен для домашней электросети, поэтому для эффективной защиты от него требуется подключить УЗИП.
Для чего нужно подключение УЗИП?
Для того чтобы защитить электрическую сеть и подключаемые к ней приборы от мощных импульсов тока и резких перепадов напряжения, устанавливается устройство для защиты линии и оборудования от импульсных напряжений (сокращенное обозначение – УЗИП). Оно включает в себя один или несколько нелинейных элементов. Подключение внутренних компонентов защитного устройства может производиться как в определенной комбинации, так и различными способами (фаза-фаза, фаза-земля, фаза-ноль, ноль-земля). В соответствии с требованиями ПУЭ установка УЗИП для защиты сети частного дома или другого отдельного здания производится только после вводного автомата.
Наглядно про УЗИП на видео:
Разновидности УЗИП
Эти аппараты могут иметь один или два ввода. Включение как одновводных, как и двухвводных устройств всегда производится параллельно цепи, защиту которой они обеспечивают. В соответствии с типом нелинейного элемента УЗИП подразделяются на:
- Коммутирующие.
- Ограничивающие (ограничитель сетевого напряжения).
- Комбинированные.
Коммутирующие защитные аппараты
Для коммутирующих устройств, находящихся в обычном рабочем режиме, характерно высокое сопротивление. Когда происходит резкое увеличение напряжения в электрической сети, сопротивление прибора мгновенно падает до минимального значения. Основой коммутирующих аппаратов защиты сети являются разрядники.
Ограничители сетевого перенапряжения (ОПН)
Ограничитель импульсных перенапряжений также характеризуется высоким сопротивлением, плавно снижающимся по ходу возрастания напряжения и повышения силы электротока. Постепенное снижение сопротивления – это отличительная черта ограничивающих УЗИП. Ограничитель сетевого перенапряжения (ОПН) имеет в своей конструкции варистор (так называется резистор, величина сопротивления которого находится в нелинейной зависимости от воздействующего на него напряжения). Когда параметр напряжения становится больше порогового значения, происходит резкое увеличение силы тока, проходящего через варистор. После сглаживания электрического импульса, вызванного коммутационной перегрузкой или ударом молнии, ограничитель сетевого напряжения (ОПН) возвращается в обычное состояние.
Комбинированные УЗИП
Устройства комбинированного типа сочетают в себе возможности коммутационных и ограничивающих аппаратов. Они могут как коммутировать разность потенциалов, так и ограничивать ее возрастание. При необходимости комбинированные приборы могут выполнять одновременно обе этих задачи.
Классы устройств защиты от ИП
Существует 3 класса аппаратов защиты линии от перенапряжения:
Устройства I класса устанавливаются в распределительном щите или вводном шкафу и позволяют обеспечить защиту сети от импульсного перенапряжения, когда электрический разряд во время грозы попадает в ЛЭП или молниезащиту.
Приборы II класса обеспечивают дополнительную защиту электрической линии от повреждений в результате удара молнии. Устанавливают их и в том случае, когда необходимо защитить сеть от импульсных скачков напряжения, вызванных коммутацией. Их монтируют после устройств I класса.
Рассказ про УЗИП от специалистов компании ABB на видео:
Аппараты класса I+II обеспечивают защиту отдельных жилых домов. Монтаж этих приборов производится неподалеку от электрического оборудования. Они играют роль последнего барьера, сглаживающего остаточное перенапряжение, которое, как правило, имеет незначительную величину. Устройства этого класса выпускаются в виде специализированных электророзеток или вилок.
Одновременная установка устройств I, II и III класса гарантирует трехступенчатую защиту электрической линии от импульсных скачков напряжения.
Как подключить УЗИП в частном доме?
Защитные устройства могут включаться в бытовые электрические сети (с одной фазой и рабочим напряжением 220В) и в токоведущие линии промышленных объектов (три фазы, 380В). Исходя из этого, полная схема подключения УЗИП предусматривает воздействие соответствующего показателя напряжения.
Если роль заземления и нулевого проводника играет общий кабель, то в такой схеме устанавливается простейшее одноблоковое УЗИП. Подключается он следующим образом: фазная жила, подключенная ко входу защитного устройства – выходной кабель, соединенный с общим защитным проводником – защищаемые электроприборы и оборудование.
В соответствии с требованиями современной электротехнической документации нулевой и заземляющий проводники объединяться не должны. Исходя из этого, в новых домах для защиты цепи от скачков напряжения применяется двухмодульный аппарат, имеющий три отдельных клеммы: фаза, нейтраль и заземление.
В таком случае включение устройства в схему производится по другому принципу: фаза и нулевой кабель идут на соответствующие клеммы УЗИП, а затем шлейфом на подсоединенное к линии оборудование. Заземляющий проводник также подключается к своей клемме защитного прибора.
В каждом из описанных случаев чрезмерный ток, возникающий при перенапряжении, уходит в землю по кабелю заземления или общему защитному проводу, не оказывая воздействия на линию и подсоединенное к ней оборудование.
Ответы на вопросы про УЗИП на видео:
Заключение
В этой статье мы рассказали о том, что же такое УЗИП, каких типов бывают эти устройства и как они классифицируются, а также разобрались с тем, как производится их подключение к защищаемой цепи. Напоследок нужно сказать, что использование этого прибора, в отличие от УЗО, в линии электропитания частного дома обязательным не является. Включение его в сеть в каждом отдельно взятом случае требует учета индивидуальной заземляющей схемы, а также размещения ГЗШ и вводного автомата. Поэтому перед покупкой и установкой УЗИП настоятельно рекомендуем воспользоваться консультацией опытного электрика.
Устройство защиты перенапряжений (УЗИП) — схема подключения
Импульсное перенапряжение (ИП) – это кратковременное, длящееся доли секунд, и резкое повышение (скачок) напряжения, которое опасно для электрической линии и электрического оборудования своим разрушающим воздействием.
Причины появления ИП
Существует две основных причины появления ИП, это природная и технологическая. В первом случае причиной является прямое или косвенное попадание молнии в линию электропередачи (ЛЭП) или в молниезащиту защищаемого здания. Во втором случае скачки напряжения появляются из-за коммутационных перегрузок на силовых трансформаторных подстанциях.
Назначение УЗИП
Чтобы обезопасить электрическую линию, электрическое оборудование и электрические приборы от резких скачков напряжения и опасных электрических токовых импульсов применяют устройства защиты от импульсных перенапряжений (сокращённо УЗИП).
В состав УЗИП входит как минимум один нелинейный элемент. Если их несколько, то внутреннее подключение УЗИП может выполняться между разными фазами, между фазой и заземлением (землёй), а также между нулём и фазой, между нулём и заземлением. Кроме того, подключение нелинейных элементов выполняется и в виде определённой комбинации.
Виды УЗИП
По количеству вводов УЗИП бывают одновводные и двухвводные. Подключение первого вида выполняется параллельно защищаемой электрической цепи. УЗИП второго вида имеют два комплекта выводов – вводные и выводные.
По типу нелинейного элемента делятся на:
● УЗИП коммутирующего типа;
● УЗИП ограничивающего типа;
● УЗИП комбинированного типа.
- УЗИП коммутирующего типа в нормальном рабочем режиме обладает достаточно высоким значением сопротивления. Но в случае резкого скачка напряжения сопротивление УЗИП резко изменяется до очень низкого значения. УЗИП коммутирующего типа основаны на «разрядниках».
- УЗИП ограничивающего типа также изначально имеет сопротивление большой величины, но по мере увеличения напряжения в сети и увеличения волны электрического тока, сопротивление постепенно снижается. УЗИП данного типа нередко называют «ограничителями».
- Комбинированные УЗИП конструктивно состоят из элементов с функцией коммутации и элементов с функцией ограничения, соответственно они способны коммутировать напряжение, ограничивать повышение напряжения, а также способны выполнять эти две функции одновременно.
Классы УЗИП
УЗИП делят на три класса. УЗИП класса 1 применяют для защиты от ИП, вызванных прямым попаданием молнии в молниезащиту или в линию электропередачи. УЗИП класса 1 обычно монтируют внутри вводного распределительного шкафа (ВРЩ) или внутри главного распределительного щита (ГРЩ). УЗИП класса 1 нормируются импульсным электрическим током с формой волны 10/350 мкс. Это наиболее опасное значение импульсного тока.
УЗИП класса 2 применяются в качестве дополнительной защиты от попаданий молнии. Также их применяют, когда нужно выполнить защиту от коммутационных помех и перенапряжений. Монтаж УЗИП класса 2 выполняется после УЗИП класса 1. УЗИП класса 2 нормируется импульсным током с формой волны 8/20 мкс. Конструкция УЗИП класса 2 – это основание (корпус) и специальные сменные модули, имеющие сигнализирующий индикатор. По индикатору можно узнать о состоянии УЗИП. Зелёный цвет индикатора указывает на нормальный режим работы устройства, оранжевый цвет индикации указывает на необходимость замены сменных модулей. Иногда в конструкции УЗИП используется специальный электрический контакт, который дистанционно передаёт сигнал о том, в каком состоянии находится устройство. Это очень удобно для обслуживания УЗИП.
УЗИП класса 1+2 применяются для защиты отдельных жилых зданий. УЗИП данного типа устанавливаются недалеко от электрооборудования. Они используются в качестве последнего барьера, защищаемого оборудование от небольших остаточных перенапряжений. В качестве УЗИП данного класса выпускаются специализированные электрические вилки, розетки и др.
Использование УЗИП всех трёх классов, позволяет построить трехступенчатую защиту от импульсных перенапряжений.
Схемы подключения УЗИП в частном доме
УЗИП подключаются к однофазной сети 220В или к трёхфазной сети 380В. На промышленных объектах наиболее часто применяются трёхфазные УЗИП. Что касается частных домов и бытовой электрической сети, то используется УЗИП на напряжение 220В. Поэтому полная схема, в которой используется УЗИП, должна быть выполнена на такое напряжение и с применением соответствующего типа УЗИП. Вариант схемы подключения и конструктивного исполнения применяемого УЗИП зависит от режима нейтрали.
Если нейтраль N и защитный проводник PE объединены в один общий проводник PEN, то для защиты от ИП применяется самое простое по конструкции УЗИП, которое состоит всего лишь из одного блока. Схема подключения такого УЗИП выполняется в следующем виде: фазный провод, подключаемый на вход УЗИП – выходной провод, подключённый к PEN-проводнику – параллельно подключённое защищаемое электрооборудование или электрические аппараты.
По современным электротехническим требованиям нейтраль электрической сети должна выполняться отдельно от защитного проводника PE. В таком случае используется УЗИП с двумя модулями и отдельными клеммами L, N, PE. Вариант такой схемы подключения выглядит следующим образом: фазный провод подключается на клемму устройства защитного отключения L и шлейфом идёт на защищаемое оборудование. Нулевой проводник подключается на клемму N устройства УЗИП и шлейфом также идёт на оборудование. Клемма PE устройства УЗИП подключается на защитную шину PE. Аналогично заземляется и защищаемое оборудование.
Таким образом, и в первом и во втором случае при возникновении перенапряжений импульсные токи уходят в землю либо по проводнику PEN либо по защитному проводнику PE, не затрагивая защищаемое электрооборудование.
Устройство защиты от импульсных перенапряжений: применение и схема монтажа
Природа импульсных перенапряжений и их влияние на технику
Многим с детства знакома суета с отключением от сети бытовых электроприборов при первых признаках надвигающейся грозы. Сегодня электрооборудование городских сетей стало более совершенным, из-за чего многие пренебрегают элементарными устройствами защиты. В то же время проблема не исчезла совсем, бытовая техника, особенно в частных домах, все еще находится в зоне риска.
Характер возникновения импульсных перенапряжений (ИП) может быть природным и техногенным. В первом случае ИП возникают из-за попадания молнии в воздушные ЛЭП, причем расстояние между точкой попадания и подверженными риску потребителями может составлять до нескольких километров. Возможен также удар в радиомачты и молниеотводы, подключенные к основному заземляющему контуру, в этом случае в бытовой сети появляется наведенное перенапряжение.
1 — удаленный удар молнии в ЛЭП; 2 — потребители; 3 — контур заземления; 4 — близкий удар молнии в ЛЭП; 5 — прямой удар молнии в громоотвод
Техногенные ИП непредсказуемы, они возникают в результате коммутационных перегрузок на трансформаторных и распределительных подстанциях. При несимметричном повышении мощности (только на одной фазе) возможен резкий скачок напряжения, предусмотреть такое почти невозможно.
Импульсные напряжения очень коротки по времени (менее 0,006 с), они появляются в сети систематически и чаще всего проходят незаметно для наблюдателя. Бытовая техника рассчитана выдерживать перенапряжения до 1000 В, такие появляются наиболее часто. При более высоком напряжении гарантирован выход из строя блоков питания, возможен также пробой изоляции в проводке дома, что приводит к множественным коротким замыканиям и пожару.
Как устроен и как работает УЗИП
УЗИП, в зависимости от класса защиты, может иметь полупроводниковое устройство на варисторах, либо иметь контактный разрядник. В нормальном режиме УЗИП работает в режиме байпаса, ток внутри него протекает через проводящий шунт. Шунт соединен с защитным заземлением через варистор или двумя электродами со строго нормируемым зазором.
При скачке напряжения, даже очень непродолжительном, ток проходит через эти элементы и растекается по заземлению или компенсируется резким падением сопротивления в петле фаза-ноль (короткое замыкание). После стабилизации напряжения разрядник теряет пропускную способность, и устройство снова работает в нормальном режиме.
Таким образом, УЗИП на некоторое время замыкает цепь, чтобы переизбыток напряжения мог преобразоваться в тепловую энергию. Через устройство при этом проходят значительные токи — от десятков до сотни килоампер.
В чем различие между классами защиты
В зависимости от причин возникновения ИП, различают две характеристики волны повышенного напряжения: 8/20 и 10/350 микросекунд. Первая цифра — это время, за которое ИП набирает максимальное значение, вторая — время спада до номинальных значений. Как видно, второй тип перенапряжений более опасный.
Устройства I класса предназначены для защиты от ИП с характеристикой 10/350 мкс, наиболее часто возникающих при разряде молнии в ЛЭП ближе 1500 м к потребителю. Устройства способны кратковременно пропустить через себя ток от 25 до 100 кА, практически все приборы I класса основаны на разрядниках.
УЗИП II класса ориентированы на компенсацию ИП с характеристикой 8/20 мкс, пиковые значения тока в них колеблются от 10 до 40 кА.
Класс защиты III предназначен для компенсации перенапряжений со значениями тока менее 10 кА при характеристике ИП 8/20 мкс. Устройства класса защиты II и III основаны на полупроводниковых элементах.
Может показаться, что достаточно установки только устройств класса I, как наиболее мощных, но это не так. Проблема в том, что чем выше нижний порог пропускного тока, тем менее чувствителен УЗИП. Другими словами: при коротких и относительно низких значениях ИП мощный УЗИП может не сработать, а более чувствительный не справится с токами такой величины.
Устройства с классом защиты III рассчитаны на устранение самых низких ИП — всего в несколько тысяч вольт. Они полностью аналогичны по характеристикам устройствам защиты, устанавливаемым производителями в блоках питания бытовой техники. При дублирующей установке они первыми принимают на себя нагрузку и предотвращают срабатывание УЗИП в приборах, ресурс которых ограничен 20–30 циклами.
Есть ли необходимость в УЗИП, оценка рисков
Полный перечень требований к организации защиты от ИП изложен в МЭК 61643–21, определить обязательность установки можно по стандарту МЭК 62305–2, согласно которому устанавливается конкретная оценка степени риска удара молнии и вызванных им последствий.
В целом при электроснабжении от воздушных ЛЭП установка УЗИП I класса почти всегда предпочтительна, если только не был выполнен комплекс мероприятий по снижению влияния гроз на режим электроснабжения: повторное заземление опор, PEN-проводника и металлических несущих элементов, устройство громоотвода с отдельным контуром заземления, установка систем уравнивания потенциалов.
Более простой способ оценить риск — сопоставить стоимость незащищенной бытовой техники и устройств защиты. Даже в многоэтажных домах, где перенапряжения имеют весьма низкие значения при характеристике 8/20, риск пробоя изоляции или выхода из строя приборов достаточно велик.
Установка устройств в ГРЩ
Большинство УЗИП имеют модульное исполнение и могут быть установлены на DIN-рейку 35 мм. Единственное требование — щит для установки УЗИП должен иметь металлический корпус с обязательным подключением к защитному проводнику.
При выборе УЗИП, помимо основных рабочих характеристик, следует учитывать также номинальный рабочий ток в режиме байпаса, он должен соответствовать нагрузке в вашей электросети. Другой параметр — максимальное напряжение ограничения, оно не должно быть ниже самого высокого значения в рамках суточных колебаний.
УЗИП подключаются последовательно к питающей однофазной или трехфазной сети, соответственно через двухполюсный и четырехполюсный автоматический выключатель. Его установка необходима на случай спаивания электродов разрядника или пробоя варистора, что вызывает постоянное короткое замыкание. На верхние клеммы УЗИП подключают фазы и защитный проводник, на нижние — нулевой.
Пример подключения УЗИП: 1 — ввод; 2 — автоматический выключатель; 3 — УЗИП; 4 — шина заземления; 5 — контур заземления; 6 — счетчик электроэнергии; 7 — дифференциальный автомат; 8 — к автоматам потребителей
При установке нескольких защитных устройств с разными классами защиты требуется их согласование с помощью специальных дросселей, подключенных последовательно с УЗИП. Защитные устройства встраиваются в цепь по возрастанию класса. Без согласования более чувствительные УЗИП будут принимать основную нагрузку на себя и раньше выйдут из строя.
Установки дросселей можно избежать, если протяженность кабельной линии между устройствами превышает 10 метров. По этой причине УЗИП I класса монтируют на фасаде еще до счетчика, защищая от перенапряжений учетный узел, а второй и третий класс устанавливают, соответственно, на ВРУ и этажных/групповых щитках.