Dilmet-pro.ru

Стройка и Ремонт
7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Из каких частей состоит электрическая дуга

Все о сварке

Уже более полувека сварка является одним из важнейших ремесел для человека. Благодаря сварочному аппарату строятся космические корабли, функционируют заводы, и для многих умельцев сварка превратилась в хобби. Но даже самый технологичный сварочный аппарат не принесет желаемого результата без стабильной сварочной электрической дуги и ее качественных характеристик.

Электрическая сварочная дуга позволяет надежно сварить даже самые сложные конструкции из металла. Чтобы получить качественные сварные швы нужно учесть все ее характеристики, знать особенности и строение дуги. Дополнительно важно учитывать температуру и напряжение дуги при ручной дуговой сварке. Из этой статьи вы узнаете, что такое сварочная дуга и сущность протекающих в ней процессов, научитесь применять полученные знания на практике.

  • Сварочная дуга: определение
  • Суть и строение дуги
  • Виды сварочной дуги
  • При каких условиях горит дуга
  • Особенности дуги
  • Вместо заключения

Сварочная дуга: определение

Итак, что такое сварочная дуга и каковы ее характеристики? Электроды, находящиеся под напряжением в смеси газов и паров, формируют мощный разряд. Что называется электрическим разрядом? Разряд — это результат прохождения электрического тока через газ. Ну а результат всего процесса в целом называют сварочной дугой. Сварочная дуга и ее свойства отличаются большой температурой и плотностью тока, поэтому дуга способна расплавить практически любой металл. Говоря более простыми словами, сварочная дуга является отличным проводником, преобразующим получаемую электрическую энергию в тепловую. За счет этой тепловой энергии и плавится металл.

Суть и строение дуги

Суть сварочной дуги крайне проста. Давайте разделим процесс на несколько пунктов:

  • Сначала электрический ток проходит через катодную и анодную область и проникает в газовую среду. Формируется электрический разряд с сильным свечением.
  • Образуется дуга. Температура сварочной дуги может доходить до 10 тысяч градусов по Цельсию, а этого достаточно, чтобы расплавить практически любой материал.
  • Затем ток с дуги переходит на свариваемый металл. Вот и все ее характеристики.

Свечение и температура разряда настолько сильны, что могут нанести ожоги и лишить сварщика зрения. Поэтому мастера используют сварочные маски, защитные перчатки и костюм. Ни в коем случае не занимайтесь сваркой без надлежащей защиты.

Строение сварочной дуги представлено на картинке ниже.

В области катода и анода во время горения дуги образуются пятна, где температура достигает своего предела. Именно через анодные и катодные области проходит электрический ток, при этом в этих областях напряжение значительно падает, а на столбе напряжения сварочной дуги сохраняется, поскольку столб располагается между анодом и катодом. Многие новички спрашивают, как измерить длину дуги. Достаточно посмотреть на катодную и анодную область, а также на сварочный столб. Их совокупность и называется длинной сварочной дуги. Средняя длина составляет 5 миллиметров. В этом случае температура получаемой тепловой энергии оптимальна и позволяет выполнить большинство сварочных работ. Теперь, когда мы узнали, что сварочная дуга представляет собой, обратимся к разновидностям.

Виды сварочной дуги

Сварочная дуга и ее характеристики могут отличаться по прямому и косвенному действию сварочного тока, а также по атмосфере, в которой они формируются. Давайте разберем эту тему подробнее.

Прямое действие сварочной дуги характеризуется особым направлением тока. Электрод располагается почти параллельно свариваемой поверхности и при этом дуга формируется под углом в 90 градусов. Электрическая сварочная дуга и ее характеристики могут быть и косвенного действия. Она может формироваться лишь с использованием двух электродов, расположенным под углом над поверхностью свариваемой детали. Здесь так же возникает сварочная дуга и металл плавится. Как мы писали выше, сварочные дуги также делятся по атмосфере, в которой формируются. Вот их краткая классификация:

  • Открытая среда. В открытой среде (атмосфере) дуга формируется за счет кислорода из воздуха. Вокруг нее образуется газ, содержащий пары свариваемого металла, выбранного электрода и его покрытия. Это самая распространенная среда при дуговой сварке.
  • Закрытая среда. В закрытой среде дуга горит под толстым слоем защитного флюса при этом так же формируется газ, но содержащий не только пары металла и электрода, а еще и пары флюса.
  • Газовая среда. Дугу поджигают и подают один из видов сжатого газа (это может быть гелий или водород). Дополнительная подача сжатого газа также защищает свариваемые детали от окисления, газы формируют нейтральную среду. Здесь, как и в остальных случаях, формируется газ, который содержит пары металла, электрода и сжатый газ, который сварщик дополнительно подает во время горения дуги.

Еще сварочные дуги могут быть стационарными и импульсными. Стационарные используют для долгой кропотливой работы без необходимости частого перемещения дуги. А импульсную используют для быстрой однократной работы.

Также сварочная дуга и ее характеристики могут косвенно классифицироваться по виду используемого в работе электрода (например, угольного или вольфрамового, плавящегося и неплавящегося). Опытные сварщики чаще всего используют неплавящийся электрод, чтобы лучше контролировать качество получаемого сварного соединения. Как видите, процесс сварки простой сварочной дугой может иметь множество особенностей, и их нужно учитывать в своей работе.

При каких условиях горит дуга

В обычном цеху или в вашем гараже средняя температура составляет 20 градусов по Цельсию, а давление не превышает одной атмосферы. В таких условиях газ практически не способен проводить электрический ток и тем самым формировать дугу. Для решения этой проблемы нужно добавить ионы в образующиеся газы. Вот что называют ионизацией профессиональные мастера.

Также в катодной области нужно постоянно поддерживать постоянную температуру. Это необходимо, чтобы дуга возникла и поддерживала горение. Но поскольку именно в области катода и анода температура может снижаться быстрее, у многих новичков возникает масса проблем. Кроме того, температура области катода может сильно варьироваться в зависимости от температуры в помещении, где проходит сварочный процесс. Проблем можно избежать, если следить за исправностью источника питания и стабильностью подачи электричества (особенно важный момент для домашних сварщиков с нестабильным напряжением в бытовой электросети). Все это оказывает большое влияние на свойства сварочной дуги и сущность протекающих в ней процессов.

Особенности дуги

Сварочная дуга и ее характеристики обладают рядом особенностей, которые нужно учитывать в своей работе:

  • Как мы неоднократно говорили, у дуги очень высокая температура. Она достигается за счет большой плотности электрического тока (плотность может достигать тысячи ампер на квадратный сантиметр). По этой причине важно правильно настроить аппарат и быть осторожным при сварке тонких металлов.
  • Электрическое поле неравномерно распределяется между электродами, если их используется две штуки. При этом в сварочном столбе напряжение практически не меняется, а вот в катодной области это напряжение заметно снижается, что может привести к ухудшению качества шва.
  • В сварочном столбе, в свою очередь, наблюдается самый высокий показатель температуры, чего нельзя сказать о других частях дуги. Учтите, что если вам необходимо увеличить длину дуги, то вы скорее всего потеряете часть этой температуры. Этот показатель особенно важен при сварке металлов с высокой температурой плавления.

Еще с помощью выбора плотности тока можно регулировать падение напряжения сварочной дуги. Чем выше плотность тока, тем выше вероятность, что напряжение сварочной дуги упадет. Но бывают случаи, когда от нарастающей силы тока напряжение сварочной дуги увеличивается. Чтобы контролировать этот процесс понадобится некоторый опыт. Не бойтесь экспериментировать, если вам позволяет работа. Это были основные свойства сварочной дуги, на которые следует обратить внимание.

Вместо заключения

Теперь вы знаете все о сварочной дуге и ее свойствах, а также знаете ее характеристики. Опытные сварщики могут в комментариях поделиться своим пониманием, что из себя представляет сварочная дуга и сущность протекающих в ней процессов. Это будет особенно полезно для начинающих сварщиков.

Кратко резюмируя, сварочная дуга состоит из сварочного столба, анодных и катодных областей. Именно в этих областях проходит ток. В результате формируется электрический разряд. Образуется дуга и преобразовывает полученный ток в тепло, температура может достигать 10 тысяч градусов по Цельсию!
Саму дугу можно зажечь с помощью двух методов: чирканья и постукивания. Новички предпочитают метод постукивания, но мы рекомендуем освоить и метод чирканья, поскольку это улучшит ваши профессиональные навыки и предотвратит от залипания электродов. Желаем удачи!

Как в электрических аппаратах происходит гашение электрической дуги

Для погасания дуги необходимо, чтобы процессы деионизации превосходили процессы ионизации. Для гашения дуги необходимо создать условия при которых падение напряжения на дуге превосходило бы напряжение, даваемое источником питания.

Принудительное движение воздуха

Гашение дуги в струе сжатого воздуха, полученной с помощью компрессора, весьма эффективно. Такое гашение в аппаратах низкого напряжения не используется, так как дугу можно погасить более простыми спо­собами, без применения специального оборудования для сжатия воздуха.

Для гашения дуги, особенно при критических токах (когда появляются условия для гашения электрической дуги, называ­ются критическими), применяется принудительное дутье воздуха, создаваемого деталями подвижной системы при движении в процессе отключения.

Гашение дуги в жидкости , например в трансформаторном масле, является очень эффективным, так как образующиеся га­зообразные продукты разложения масла при высокой температуре электрической дуги интенсивно деионизируют ствол дуги. Если контакты отключающего аппарата поместить в масло, то возникающая при размыкании дуга приводит к интенсивному газообразованию и испарению масла. Вокруг дуги образуется га­зовый пузырь, который состоит в основном из водорода. Быстрое разложение масла приводит к повышению давления, что способ­ствует лучшему охлаждению дуги и деионизации. Из-за сложно­сти конструкции этот способ гашения дуги в аппаратах низкого напряжения не применяется.

Повышенное давление газа облегчает гашение дуги, так как при этом повышается теплоотдача. Установлено, что вольт-амперные характеристики дуги в разных газах, находящихся при разных давлениях (больше атмосферного), будут одинако­выми, если в этих газах одинаковые коэффициенты теплоотдачи конвекцией..

Гашение при повышенном давлении осуществляется в пре­дохранителях с закрытым патроном без наполнителя серии ПР.

Электродинамическое воздействие на дугу . При токах бо­лее 1 А большое влияние на гашение дуги оказывают электро­динамические силы, возникающие между дугой и соседними токоведущими частями. Их удобно рассматривать как результат взаимодействия тока дуги и магнитного поля, созданного током, который проходит по токоведущим частям. Простейшим способом создания магнитного поля является соответствующее распо­ложение электродов, между которыми горит дуга.

Для успешного гашения необходимо, чтобы расстояние между электродами по ходу ее движения плавно увеличивалось. При малых токах никакие, даже очень маленькие, ступеньки (высотой 1 мм) не­желательны, так как у их края дуга может задержаться.

Магнитное гашение. Если путем соответствующего распо­ложения токоведущих частей не удается достигнуть гашения при использовании приемлемых растворов контактов, то, чтобы их не слишком увеличивать, применяют так называемое маг­нитное гашение. Для этого в зоне, где горит дуга, создают магнитное поле с помощью постоянного магнита или электромагни­та, дугогасительная катушка которого включена последовательно в главную цепь. Иногда магнитное поле, созданное контуром тока, усиливается специальными стальными деталями. Магнитное поле направляет дугу в нужную сторону.

Читать еще:  Газовая колонка в ванной комнате

При последовательно включенной дугогасительной катуш­ке изменение направления тока в главной цепи не вызывает из­менения направления движения дуги. При постоянном магните дуга будет двигаться в разные стороны в зависимости от направ­ления тока в главной цепи. Обычно конструкция дугогасительной камеры этого не позволяет. Тогда аппарат может работать при одном направлении тока, что представляет значительные неудобства. Это главный недостаток конструкции с постоянным магнитом, которая проще, компактнее и дешевле конструкции с дугогасительной катушкой.

Способ гашения дуги с помощью по­следовательно включенной катушки состоит еще в том, что наибольшую напряженность поля нужно создать при критических токах, которые невелики. Дугогасительное поле становиться большим только при больших токах, когда можно обойтись и без него, так как электродинамические силы становятся доста­точно значительными для выдувания дуги.

Магнитное гашение широко используется в аппаратах, рассчитанных на нормальное атмосферное давление. В автома­тических воздушных выключателях на напряжение до 600 В (за исключением быстродействующих) дугогасительные катушки не применяют, так как это аппараты преимущественно ручного управления и у них легко создать достаточно большой раствор контактов. Однако усиление поля с помощью стальных скоб, ох­ватывающих токоведущие части, применяется довольно часто. Дугогасительные катушки используются в однополюсных элек­тромагнитных контакторах постоянного тока, так как раствор контактов там нужно делать значительно меньшим во избежа­ние применения чрезмерно большого втягивающего электромагнита.

Pereosnastka.ru

Обработка дерева и металла

Сварочной дугой называется длительный электрический разряд между двумя электродами в ионизированной смеси газов и паров, характеризующийся высокой плотностью тока и малым напряжением.

Под электрическим разрядом понимают прохождение тока через газовую среду. Существует несколько форм или видов электрического разряда: дуговой, тлеющий, искровой, молния и др.

Один разряд отличается от другого длительностью, напряжением, силой тока и др.

В зависимости от схемы подвода сварочного тока, рода тока и других признаков различают следующие виды сварочных дуг:
– дуга прямого действия (рис. 1, а), когда дуга горит между электродом и свариваемым металлом;
– дуга косвенного действия (рис. 1, б), когда дуга горит между двумя электродами, а свариваемый металл не включен в электрическую цепь;
– дуга между двумя плавящимися электродами и свариваемым изделием при питании переменным трехфазным током (рис. 1, в);
– сжатая дуга (рис. 1, г) и др.

Условия горения сварочной дуги. В обычных условиях газы не проводят электрического тока. Для образования и поддержания горения дуги необходимо иметь в пространстве между электродами электрически заряженные частицы (положительные и отрицательные ионы и электроны). Ионы в газовом промежутке между электродами образуются в результате потери или присоединения к атомам электронов, а электроны испускаются сильно нагретым катодом.

Процесс образования электрически заряженных частиц в междуэлектродном пространстве называется ионизацией, а энергия, затраченная на отрыв электрона от атома, следовательно, и на образование положительного иона,— работой ионизации. Эта работа выражается в электрон-вольтах (эВ) и называется потенциалом ионизации. Для отрыва электрона от атома требуется сообщить ему значительную скорость. Энергия, затраченная на сообщение электрону этой скорости, носит название потенциала возбуждения и измеряется в эВ.

Величины потенциалов ионизации и возбуждения зависят от природы атома и колеблются от 3,9 до 24,5 эВ. Наименьшими потенциалами ионизации обладают щелочноземельные металлы (калий, кальций) и их соединения. Элементы, обладающие малыми потенциалами ионизации и возбуждения, вводят в состав электродных покрытий, так как они способствуют устойчивому горению дуги. Это первое условие устойчивого горения дуги. Второе условие — напряжение холостого хода источника питания должно быть больше напряжения дуги.

Третье условие горения дуги — поддержание постоянной температуры нагрева катода. Эта температура зависит от материала катода, состава газового промежутка между электродами, диаметра электрода и температуры окружающей среды.

Строение сварочной дуги. Сварочная дуга состоит из катодной области, столба дуги и анодной области.

Катодная область распространяется на участок электродного материала и на приэлектродную часть дуги. На торце электрода при бомбардировке его положительными ионами образуется катодное пятно, с которого присходит при этом дополнительный выход электронов, кроме образовавшихся при ионизации в междуэлектродном пространстве. Электроны, выходящие с поверхности электрода, называются первичными. Выход первичных электронов объясняется несколькими факторами: термической эмиссией (испусканием) электронов, автоэлектронной эмиссией и ионизацией на катоде. Термическая эмиссия электронов заключается в нагреве поверхности электрода до высокой температуры, при которой связь электрона с ядром атома ослабевает и под влиянием электростатического притяжения он отрывается с поверхности катода и с большой скоростью устремляется к аноду. С увеличением температуры нагрева электрода число вырываемых электронов увеличивается.

Автоэлектронная эмиссия состоит в том, что под влиянием высокой напряженности электрического поля с катода вырываются первичные электроны и летят к аноду. С увеличением разности потенциалов между электродами выход с катода первичных электронов возрастает.

Ионизация на катоде происходит в результате соударений с электронами положительных ионов, которые образуются при ионизации в столбе дуги и летят к катоду. Ионизация также происходит в результате излучения (так называемая фотоионизация).

В столбе дуги происходит образование вторичных электронов, а также положительных ионов. Электроны устремляются к аноду, поддерживая ионизацию в анодной области. Положительные ионы движутся к катоду, выбивают из него электроны; при этом часть положительных ионов, соединяясь с электронами, образует нейтральные атомы. Процесс образования нейтральных атомов называется рекомбинацией. Вследствие рекомбинации уравновешиваются процессы исчезновения и образования заряженных частиц в дуге и степень ионизации нагретого газа остается неизменной.

Анодная область дуги состоит из анодного пятна и приэлек-тродной части. Анодное пятно подвергается бомбардировке потоком электронов, перемещающихся от катода, и электронов, образовавшихся при ионизации в столбе дуги. В результате бомбардировки анода возникают ионы. От сильной бомбардировки анодная область всегда имеет форму вогнутой сферы (чаши), которая называется кратером.

Особенности сварочной дуги.

Сварочная дуга по сравнению с другими электрическими разрядами имеет следующие особенности:
1. Неравномерное распределение электрического поля в междуэлектродном пространстве. Вблизи электродов создаются резкие изменения потенциала — это катодное и анодное паденпя напряжения, причем катодное падение напряжения (порядка 10 В) обычно значительно больше анодного. Такие скачки падений напряжения на участке весьма малой протяженности вызваны условиями прохождения тока из одной среды (металлический проводник) в другую (газ и пары сварочных материалов).
2. Высокая плотность тока в дуге, достигающая тысяч А/см2 на электродах и в столбе дуги. В настоящее время сжатую дугу широко применяют в производстве сварных изделий.
3. Высокая температура дуги. Наибольшая температура достигается в столбе дуги, наименьшая — на поверхности катода и анода. Температура на поверхности катода и анода достигает температуры испарения электродов независимо от вида дуговой сварки. Например, при сварке стали на прямой полярности угольным электродом температура катода может достигать температуры кипения углерода, т. е.

Обычно величина эффективного ионизационного потенциала близка по величине к наименьшему ионизационному потенциалу одного из компонентов, участвующих в смеси дугового газа.

Особенно сильно возрастает температура столба дуги при его сжатии.

4. Возможность получения различных статических вольтамперных характеристик. Статической вольт-амперной характеристикой дуги называют зависимость падения напряжения в дуге от силы тока при постоянной длине дуги (установившемся горении). Дуга, применяющаяся в сварочной технике, может иметь падающую, жесткую и возрастающую характеристики в зависимости от условий сварки.

Падающая характеристика — с увеличением тока напряжение уменьшается, жесткая характеристика — увеличение тока не изменяет напряжения дуги, возрастающая характеристика — увеличение сварочного тока приводит к возрастанию напряжения дуги.

Падающий участок характерен для маломощной дуги, при сварочном токе менее 50 А и плотности тока на электроде 10—12 А/мм2. Жесткая характеристика соответствует сварочным токам 50—1000 А и плотностям тока на электроде от 12 до 80 А/мм2. Возрастающая характеристика дуги наблюдается при сварке тонкой сварочной проволокой с плотностями тока на электроде более 80 А/мм2.

Нагрев изделия и эффективный коэффициент полезного действия дуги. Количество тепла, вводимое дугой в свариваемое изделие в единицу времени, называют эффективной тепловой мощностью дуги qu. Она включает в себя тепло, непосредственно выделяющееся на катодном или анодном пятне на изделии; тепло, поступающее с каплями электродного металла, покрытия или флюса; тепло, вводимое в изделие из столба дуги.

Электрическая дуга

Структура и характеристики электрической дуги

Электрическая сварочная дуга – это длительный электрический разряд в плазме, которая представляет собой смесь ионизированных газов и паров компонентов защитной атмосферы, присадочного и основного металла.

Дуга получила свое название от характерной формы, которую она принимает при горении между двумя горизонтально расположенными электродами; нагретые газы стремятся подняться вверх и этот электрический разряд изгибается, принимая форму арки или дуги.

С практической точки зрения дугу можно рассматривать как газовый проводник, который преобразует электрическую энергию в тепловую. Она обеспечивает высокую интенсивность нагрева и легко управляема посредством электрических параметров.

Общей характеристикой газов является то, что они в нормальных условиях не являются проводниками электрического тока. Однако, при благоприятных условиях (высокая температура и наличие внешнего электрического поля высокой напряженности) газы могут ионизироваться, т.е. их атомы или молекулы могут освобождать или, для электроотрицательных элементов наоборот, захватывать электроны, превращаясь соответственно в положительные или отрицательные ионы. Благодаря этим изменениям газы переходят в четвертое состояние вещества называемого плазмой, которая является электропроводной.

Возбуждение сварочной дуги происходит в несколько этапов. Например, при сварке МИГ/МАГ, при соприкосновении конца электрода и свариваемой детали возникает контакт между микро выступами их поверхностей. Высокая плотность тока способствует быстрому расплавлению этих выступов и образованию прослойки жидкого металла, которая постоянно увеличивается в сторону электрода, и в конце концов разрывается.

В момент разрыва перемычки происходит быстрое испарение металла, и разрядный промежуток заполняется ионами и электронами возникающими при этом. Благодаря тому, что к электроду и изделию приложено напряжение электроны и ионы начинают двигаться: электроны и отрицательно заряженные ионы — к аноду, а положительно заряженные ионы – к катоду, и таким образом возбуждается сварочная дуга. После возбуждения дуги концентрация свободных электронов и положительных ионов в дуговом промежутке продолжает увеличиваться, так как электроны на своем пути сталкиваются с атомами и молекулами и «выбивают» из них еще больше электронов (при этом атомы, потерявшие один и более электронов, становятся положительно заряженными ионами). Происходит интенсивная ионизация газа дугового промежутка и дуга приобретает характер устойчивого дугового разряда.

Через несколько долей секунды после возбуждения дуги на основном металле начинает формироваться сварочная ванна, а на торце электрода – капля металла. И спустя еще примерно 50 – 100 миллисекунд устанавливается устойчивый перенос металла с торца электродной проволоки в сварочную ванну. Он может осуществляться либо каплями, свободно перелетающими дуговой промежуток, либо каплями, которые сначала образуют короткое замыкание, а затем перетекают в сварочную ванну.

Электрические свойства дуги определяются процессами, протекающими в ее трех характерных зонах – столбе, а также в приэлектродных областях дуги (катодной и анодной), которые находятся между столбом дуги с одной стороны и электродом и изделием с другой.

Читать еще:  Выбираем сетку для кладки газоблоков

Для поддержания плазмы дуги при сварке плавящимся электродом достаточно обеспечить ток от 10 до 1000 ампер и приложить между электродом и изделием электрическое напряжение порядка 15 – 40 вольт. При этом падение напряжения на собственно столбе дуги не превысит нескольких вольт. Остальное напряжение падает на катодной и анодной областях дуги. Длина столба дуги в среднем достигает 10 мм, что соответствует примерно 99% длины дуги. Таким образом, напряженность электрического поля в столбе дуги лежит в пределах от0,1 до 1,0 В/мм. Катодная и анодная области, напротив, характеризуются очень короткой протяженностью (около 0.0001 мм для катодной области, что соответствует длине свободного пробега иона, и 0.001 мм для анодной, что соответствует длине свободного пробега электрона). Соответственно, эти области имеют очень высокую напряженность электрического поля (до 104 В/мм для катодной области и до 103 В/мм для анодной).

Экспериментально установлено, что для случая сварки плавящимся электродом падение напряжения в катодной области превышает падение напряжения в анодной области: 12 – 20 В и 2 – 8 В соответственно. Учитывая то, что выделение тепла на объектах электрической цепи зависит от тока и напряжения, то становится понятным, что при сварке плавящимся электродом больше тепла выделяется, в той области, на которой падает больше напряжения, т.е. в катодной. Поэтому при сварке плавящимся электродом используется, в основном, обратная полярность подключения тока сварки, когда катодом служит изделие для обеспечения глубокого проплавления основного металла (при этом положительный полюс источника питания подключают к электроду). Прямую полярность используют иногда при выполнении наплавок (когда проплавление основного металла, напротив, желательно чтобы было минимальным).

В условиях сварки ТИГ (сварка неплавящимся электродом) катодное падение напряжения, напротив, значительно ниже анодного падения напряжения и, соответственно, в этих условиях больше тепла выделяется уже на аноде. Поэтому при сварке неплавящимся электродом для обеспечения глубокого проплавления основного металла изделие подключают к положительной клемме источника питания (и оно становится анодом), а электрод подключают к отрицательной клемме (таким образом, обеспечивая еще и защиту электрода от перегрева).

При этом, независимо от типа электрода (плавящийся или неплавящийся) тепло выделяется, в основном, в активных областях дуги (катодной и анодной), а не в столбе дуги. Это свойство дуги используется для того, чтобы плавить только те участки основного металла, на которые направляется дуга.

Те части электродов, через которые проходит ток дуги, называют активными пятнами (на положительном электроде – анодным, а на отрицательном – катодным пятном). Катодное пятно является источником свободных электронов, которые способствуют ионизации дугового промежутка. В то же время к катоду устремляются потоки положительных ионов, которые его бомбардируют и передают ему свою кинетическую энергию. Температура на поверхности катода в области активного пятна при сварке плавящимся электродом достигает 2500 … 3000 °С.

Строение дуги
Lк — катодная область; Lа — анодная область (Lа = Lк = 10 -5 -10 -3 см); Lст — столб дуги; Lд — длина дуги; Lд = Lк + Lа + Lст

К анодному пятну устремляются потоки электронов и отрицательно заряженных ионов, которые передают ему свою кинетическую энергию. Температура на поверхности анода в области активного пятна при сварке плавящимся электродом достигает 2500 … 4000°С. Температура столба дуги при сварке плавящимся электродом составляет от 7 000 до 18 000°С (для сравнения: температура плавления стали равна примерно 1500°С).

Влияние на дугу магнитных полей

При выполнении сварки на постоянном токе часто наблюдается такое явление как магнитное. Оно характеризуется следующими признаками:

— столб сварочной дуги резко откланяется от нормального положения;
— дуга горит неустойчиво, часто обрывается;
— изменяется звук горения дуги — появляются хлопки.

Магнитное дутье нарушает формирование шва и может способствовать появлению в шве таких дефектов как непровары и несплавления. Причиной возникновения магнитного дутья является взаимодействие магнитного поля сварочной дуги с другими расположенными близко магнитными полями или ферромагнитными массами.

Столб сварочной дуги можно рассматривать как часть сварочной цепи в виде гибкого проводника, вокруг которого существует магнитное поле.

В результате взаимодействия магнитного поля дуги и магнитного поля, возникающего в свариваемой детали при прохождении тока, сварочная дуга отклоняется в сторону противоположную месту подключению токопровода.

Влияние ферромагнитных масс на отклонение дуги обусловлено тем, что вследствие большой разницы в сопротивлении прохождению магнитных силовых линий поля дуги через воздух и через ферромагнитные материалы (железо и его сплавы) магнитное поле оказывается более сгущенным со стороны противоположной расположению массы, поэтому столб дуги смещается в сторону ферромагнитного тела.

Магнитное поле сварочной дуги увеличивается с увеличением сварочного тока. Поэтому действие магнитного дутья чаще проявляется при сварке на повышенных режимах.

Уменьшить влияние магнитного дутья на сварочный процесс можно:

— выполнением сварки короткой дугой;
— наклоном электрода таким образом, чтобы его торец был направлен в сторону действия магнитного дутья;
— подведением токоподвода ближе к дуге.

Уменьшить эффект магнитного дутья можно также заменой постоянного сварочного тока на переменный, при котором магнитное дутье проявляется значительно меньше. Однако необходимо помнить, что дуга переменного тока менее стабильна, так как из-за смены полярности она погасает и зажигается вновь 100 раз в секунду. Для того, чтобы дуга переменного тока горела стабильно необходимо использовать стабилизаторы дуги (легкоионизируемые элементы), которые вводят, например, в покрытие электродов или во флюс.

Образование и строение сварочной дуги

Сварочная дуга (СД) является концентрированным источником тепла, необходимым для расплавления основного и присадочного металла.

Проводимость любого материала зависит от количества находящихся в нём свободных частиц – электронов и ионов.

Просмотр содержимого документа
«Образование и строение сварочной дуги»

Тема урока: Образование и строение сварочной дуги.

образовательная: изучить процессы образования и строение сварочной дуги;

развивающая: развитие технологической культуры и логического мышления;

воспитательная: формирование научного мировоззрения и творческой активности.

Оснащение урока: учебник, ноутбук, проектор (содержит презентацию).

Тип урока: комбинированный.

Проверка присутствующих на уроке и их готовность к уроку…………..1мин.

Отметка отсутствующих и наличие учебных принадлежностей.

Объяснение и запись темы и целей урока…………………………………..2мин.

Актуализация опорных знаний………………………………………………5мин.

Как классифицируются виды сварки по используемой энергии?

Назовите виды сварки термического класса.

Какие сварочные процессы относятся к физическим?

Какие сварочные процессы относятся химическим?

В чём особенность металлургии сварки?

Мотивация учебной деятельности…………………………………………..3мин.

Электрическая дуга представляет собой один из видов электрических разрядов в газах, при котором наблюдается прохождение электрического тока через газовый промежуток под воздействием электрического поля.

Расстояние между электродом и металлом заполнено нейтральными атомами воздуха, который при нормальных условиях не проводит электрический ток. Поэтому для образования дуги следует соблюсти ряд условий, от которых зависят вид СД, стабильность её горения т.д.
Знание этих условий и их применения на практике во многом определяет конечных результат и характеризует квалификацию сварщика.

Изучение нового материала…………………………………………………26мин.

Конспектирование и объяснение нового материала.

Закрепление полученных знаний……………………………………………5мин.

Какие условия необходимы для зажигания дуги?

Какая дуга называется стабильной?

Из каких частей состоит дуга?

Чему равна рабочая длина дуги, если диаметр электрода 5мм?

Чему равна температура на конце электрода и поверхности металла на рисунке?

Подведение итогов урока……………………………………………………. 2мин.

Оценивание наиболее активных студентов.

Проработать изученный материал по конспекту и других, рекомендованных источников информации.

Образование и строение сварочной дуги.

Сварочная дуга (СД) является концентрированным источником тепла, необходимым для расплавления основного и присадочного металла.

Проводимость любого материала зависит от количества находящихся в нём свободных частиц – электронов и ионов. Электроны, положительные и отрицательные ионы в газах возникают при воздействии на них тепла, электрического поля, ультрафиолетовых лучей и т.д.

Процесс образования электронов и ионов называется ионизацией.

Прохождение электрического тока через газы называется электрическим газовым разрядом.

При соприкосновении торца электрода с металлом происходит короткое замыкание, который вследствие этого нагревается и в момент отрыва электрода начинают испускаться электроны. Процесс выделения электронов называется термоэлектронной эмиссией.

Электроны, двигаясь (со скоростью света) к противоположному полюсу сталкиваются с атомами воздуха и разбивают их на положительные и отрицательные ионы. При этом выделяется тепло и лучистая энергия – ультрафиолетовые лучи .Образовавшиеся «+» и (-) частицы двигаются к противоположным полюсам. Часть «+» ионов достигает катодного пятна, а другая часть не достигает и, присоединяет к себе электроны, становятся атомами (процесс образования нейтральных атомов называется рекомбинацией).

Таким образом, воздушный промежуток между торцом электрода и металлом заполняется заряженными частицами и начинает проводить ток. Процесс возникновения доли длится всего доли секунды.

Сварочной дугой называется мощный устойчивый электрический разряд в ионизированной газовой среде, образованной между электродом и изделием (или между двумя электродами).

Необходимые условия для устойчивого горения дуги:

1. Наличие источника питания (ИП) дуги, который позволяет быстро нагреть катод до температуры, необходимой для выхода электронов. Для этого ИП должен иметь напряжение, необходимое для зажигания дуги 60-80В (напряжение холостого хода (х.х.)).

2. Наличие необходимой степени ионизации в промежутке между электродом и металлом. Для повышения степени ионизации в состав покрытия электрода вводят легкоионизирующиеся вещества, например натрий, кальций.

Дуга, горящая без обрывов, называется стабильной. Стабильность горения дуги зависит от её длины, напряжения х.х., состава обмазки и т.д.

Строение сварочной дуги. По длине дугового промежутка дуга разделяется на три области (рис. 1): катодную, анодную и находящийся между ними столб дуги.

Рис. 1. Строение электрической дуги и распределение напряжения в ней: 1 — катодная область, 2 — столб дуги, 3 — анодная область.

В процессе горения дуги на электроде и металле образуются наиболее нагретые участки. Участок на катоде называется катодным пятном, а на аноде – анодным пятном. Каждая из зон характеризуется определёнными процессами, имеет свою температуру, длину.

Катодное пятно является источником электронов (Tк.п.=3200 ) и близка к температуре кипения материала электрода (для железа – 3500 . В катодном пятне выделяется около 36% общего количества теплоты дуги, а падение напряжения на нём составляет 10÷16В. Длина катодной зоны равна 10 -4 мм.

Столб дуги (Tс.д.=6000-8000 ) состоит из электронов, положительных и отрицательных ионов. В столбе дуги выделяется около 21% общего количества теплоты. Падение напряжения составляет примерно 2-12В. Длина столба дуги зависит от диаметра электрода и определяется по формуле: Lд=(0,5÷1,1)dэ и обычно равна 2-3мм. Максимальная длина дуги, при увеличении которой произойдёт её обрыв, называется предельной. Она равна Lпр.=(1,1÷1,3)dэ.

Анодное пятно представляет собой место входа электронов (Tа.п.=3900 ). На нём выделяется около 43% общего количества теплоты дуги. Длина анодной зоны равна 10 -3 мм. Падение напряжения на аноде составляет 6-8В.

В связи с малой протяженностью катодной и анодной областей можно считать практически

Читать еще:  Как рассчитать мощность вытяжки

Lс.д. = Lд. Тогда получается, что напряжение дуги прямым образом зависит от ее длины (рис1).

При сварке на постоянном токе электрод, подсоединенный к положительному полюсу источника питания дуги, называют анодом, а к отрицательному — катодом. Если сварка ведется на переменном токе, каждый из электродов является попеременно то анодом, то катодом.

Что такое электрическая дуга, как она возникает и где применяется?

Наблюдать искровые разряды приходилось каждому, в том числе и людям, далёким от познаний в электротехнике. Гигантскими искровыми разрядами сопровождаются грозы. Высвобождение огромной энергии, сконцентрированной в электрическом разряде молнии (см. рис. 1), сопровождается ослепительной вспышкой раскалённого ствола. Одним из видов искровых разрядов, созданных человечеством, является дуговой разряд, или попросту, электрическая дуга.

На сегодняшний день причины возникновение и свойства электрической дуги детально изучено наукой. Физики установили, что в области её горения возникает огромная концентрация зарядов, которые образуют плазму ствола. Температуры столба достигает нескольких тысяч градусов.

Что такое электрическая дуга?

Это загадочное явление впервые описал русский учёный В. Петров. Он создавал электрическую дугу, используя батарею, состоящую из тысяч медных и цинковых пластин. Изучая процесс зажигания дуги постоянным током, учёный пришёл к выводу, что воздушный промежуток между электродами при определённых условиях приобретает электропроводимость.

Одним из условий возникновения электрического пробоя является достаточно высокая разность потенциалов на концах электродов. Чем выше напряжение, тем больший газовый промежуток может преодолеть разряд. При этом образуется электропроводный газовый столб, который сильно разогревается во время горения дуги.

Возникает резонный вопрос: «Почему воздух, являющийся отличным изолятором в обычном состоянии, вдруг становится проводником?».

Объяснение может быть только одно – в стволе дуги образуются носители зарядов, способные перемещаться под действием электрического поля. Поскольку в воздухе, в отличие от металлов, нет свободных электронов, то вывод напрашивается только один – ионизация газов (см. рис. 3). То есть, запуск процесса насыщения газа ионами, являющимися носителями электрического заряда.

Рис. 3. Физика электрической дуги

Ионизация воздуха происходит под действием различного вида излучений, включая рентгеновское и космическое облучение. Поэтому в воздухе всегда находятся небольшое количество ионов. Но поскольку ионы почти сразу рекомбинируются (превращаются в нейтральные атомы и молекулы), то концентрация заряженных частиц всегда мизерная. Получить вспышку дуги при такой концентрации невозможно.

Для возникновения дугового разряда нужен лавинообразный процесс ионизации. Его можно вызвать путём сильного нагревания газа, которое происходит при зажигании.

При размыкании контактов происходит эмиссия электронов, скапливающихся на очень маленьком пространстве. Под действием напряжённости электрического поля отрицательные заряды устремляются к электроду с положительным знаком.

При достижении напряжения пробоя, между электродами возникает искровой разряд, разогревающий область между электродами. Если ток достаточно большой, то количество тепла будет достаточно для запуска лавинообразного процесса ионизации воздуха.

На участке, который называют дуговым промежутком, образуется ствол, называемый столбом дуги и состоящий из горячей проводимой плазмы. По этому стволу протекает ток, поддерживающий разогревание плазмы. Так происходит процесс зажигания дугового разряда.

Насыщение плазменного ствола ионами разных знаков приводит к значительному увеличению плотности тока, а также к рекомбинации части ионов. Разогревание плазмы приводит также к увеличению давления в стволе. Поэтому часть ионов улетучивает в окружающее пространство.

Если не поддерживать образование новых зарядов, то произойдёт гашение дуги. Как мы уже выяснили, устойчивому горению сопутствуют 2 фактора: наличие напряжения между электродами и поддержание высокой температуры плазмы. Исключение одного из них, приведёт к гашению дуги.

Таким образом, можем сформулировать определение электрической дуги. А именно электрическая дуга — это вид искрового разряда, сопровождающегося большой плотностью тока, длительностью горения, малым падением напряжения на промежутке ствола, характеризующегося повышенным давлением газа, в котором поддерживается высокая температура.

Электрическая дуга отличается от обычного разряда большей длительностью горения.

Строение

Электрическая дуга состоит из трёх основных зон:

  • катодной;
  • анодной;
  • плазменного столба.

В сварочных дугах размеры катодной и анодной зоны незначительные, по сравнению с длиной столба. Толщина этих зон составляет тысячные доли миллиметра. В зоне катодного падения напряжения (на конце отрицательного электрода) наблюдается наличие катодных пятен, которые образуются в результате сильного нагревания.

На рисунке 4 изображена схема строения дуги, создаваемой сварочным аппаратом.

Рис. 4. Строение сварочной дуги

Обратите внимание: с целью достижения наглядности, на картинке сильно преувеличены электродные зоны. В действительности их толщина измеряется в микронах.

Свойства

Высокая плотность тока в стволе электрической дуги определяет её главные свойства:

  1. Чрезвычайно высокую температуру плазменного ствола и околоэлектродных зон.
  2. Длительное горение, при поддержании условий образования ионов.

Эти свойства необходимо учитывать при борьбе с возникновением электрической дуги, так и при её применении в некоторых сферах.

Полезное применение

Как это ни странно, но физики нашли применение этому электрическому явлению ещё на этапе развития науки об электричестве. Пример тому – лампочка Яблочкова. Она состояла из двух угольных электродов, между которыми зажигалась электрическая дуга.

У этой лампы были два недостатка. Электроды быстро изнашивались (выгорали), а спектр света смещался в ультрафиолетовую зону, что негативно влияло на зрение. По этим причинам дуговые лампы не нашли широкого применения и их быстро вытеснили лампы накаливания, существующие до сегодняшнего дня.

Исключение составляют дугоразрядные лампы, а также мощные прожектора, используемые преимущественно в военных целях.
Дуговой разряд стал массово применяться на практике с момента изобретения сварочного аппарата. Дуговую сварку применяют для сварки металлов. (см. рис. 5)

Рис. 5. Дуговая сварка

Используя проводимость плазмы, включая в сварочную цепь специальные сварочные электроды, достигают высокой температуры в сосредоточенном пятне. Регулируя сварочный ток, сварщик имеет возможность настроить аппарат на нужную температуру дугового разряда. Для защиты ствола от тепловых потерь, металлические электроды покрыты специальной смесью, обеспечивающей стабильность горения.

Электрическую дугу применяют в доменных печах для плавки металлов. Дуговая плавка удобна тем, что можно регулировать её температуру путём изменения параметров тока.

Наряду с полезным применением, в электротехнике часто приходится бороться с дуговыми разрядами. Не контролированный дуговой разряд может нанести существенный вред на линиях электропередач, в промышленных и бытовых сетях.

Рис. 6. Дуговой разряд на ЛЭП

Причины возникновения

Исходя из определения, можем назвать условия возникновения электрической дуги:

  • наличие разнополярных электродов с большими токами;
  • создание искрового разряда;
  • поддержание напряжения на электродах;
  • обеспечение условий для сохранения температуры ствола.

Искровой разряд возникает в двух случаях: при кратковременном соприкосновении электродов или при приближении к параметрам пробоя. Мощный электрический пробой всегда зажигает ствол.

При сохранении оптимальной длины дуги температура плазмы поддерживается самостоятельно. Однако, с увеличением промежутка между электродами, происходит интенсивный теплообмен ствола с окружающим воздухом. В конце концов, в стволе, вследствие падения температуры, образование ионов лавинообразно прекратится, в результате чего произойдёт гашение пламени.

Пробои часто случаются на высоковольтных ЛЭП. Они могут привести к разрушению изоляторов и к другим негативным последствиям. Длинная электрическая дуга довольно быстро гаснет, но даже за короткое время горения её разрушительная сила огромна.

Дуга имеет склонность к образованию при размыкании контактов. При этом контакты выключателя быстро выгорают, электрическая цепь остаётся замкнутой до момента исчезновения ствола. Это опасно не только для сетей, но и для человека.

Способы гашения

Следует отметить, что гашение дуги происходит и по разным причинам. Например, в результате остывания столба, падения напряжения или когда воздух между электродами вытесняется сторонними испарениями, препятствующими ионизации.

С целью недопущения образования дуг на высоковольтных проводах ЛЭП, их разносят на большое расстояние, что исключает вероятность пробоя. Если же пробой между проводами всё-таки случится, то длинный ствол быстро охладится и произойдёт гашение.

Для охлаждения ствола его иногда разбивают на несколько составляющих. Данный принцип часто используют в конструкциях воздушных выключателей, рассчитанных на напряжения до 1кВ.

Некоторые модели выключателей состоят из множества дугогасительных камер, способствующих быстрому охлаждению.

Быстрой ионизации можно достигнуть путём испарения некоторых материалов, окружающих пространство подвижных ножей. Испарение под высоким давлением сдувает плазму ствола, что приводит к гашению.

Существуют и другие способы: помещение контактов в масло, автодутьё, применение электромагнитного гашения и др.

Воздействие на человека и электрооборудование

Электрическая дуга представляет опасность для человека своим термическим воздействием, а также ультрафиолетовым действием излучающего света. Огромную опасность таит в себе высокое напряжение переменных токов. Если незащищённый человек окажется на критически близком расстоянии от токоведущих частей приборов, может произойти пробой электричества с образованием дуги. Тогда на тело, кроме воздействия тока, окажет действие термической составляющей.

Распространение дугового разряда по конструктивным частям оборудования грозит выжиганием электронных элементов, плат и соединений.

Электрическая дуга – определение, примеры возникновения

Электрическая дуга – разновидность электрического разряда в газе, по форме существования вещества считается плазмой.

Рассмотрим несколько случаев возникновения электрической дуги. Если взять два электрода, поместить их в воздухе на определенном расстоянии, подать на них напряжение, которое постепенно увеличивать, то на определенном значении напряжения произойдет пробой воздушного промежутка между электродами, при этом будет гореть электрическая дуга.

Приведем еще пример возникновения явления электрической дуги, который наблюдал каждый человек. Наверняка у каждого в быту есть относительно мощный потребитель электрической энергии: обогреватель, чайник либо электропечь. Например, если штепсельную вилку включенного на полную мощность обогревателя резко выдернуть из розетки, будет небольшое свечение. Это электрическая дуга, образовавшаяся при разрыве контактов под нагрузкой. Если производить отключение обогревателя под нагрузкой систематически, то в скором времени выйдет из строя штепсельная розетка либо вилка. Причина этого — негативное воздействие электрической дуги. Обратите при этом внимание на контакты розетки и вилки: они потемнели и оплавились, а пластмассовый корпус розетки частично расплавился. Представьте, какие последствия дуги в электроустановках, где рабочее напряжение несколько десятков киловольт, а нагрузка в сотни ампер. Рассмотрим явление дуги в электроустановках ниже.

Электрическая дуга в электроустановках

Горение дуги сопровождается выделением большого количества энергии и увеличением температуры до нескольких десятков тысяч градусов, поэтому она очень опасна для электрооборудования. Следовательно, при проектировке различного оборудования особое внимание уделяется минимизации пагубного влияния дуги на его конструктивные части. Для гашения дуги в выключателях используется масло, сжатый воздух и наиболее перспективные среды – вакуум и элегаз. В низковольтных аппаратах, например в автомате, для гашения электрической дуги используются специальные камеры, в которых дуга делится на несколько частей и затем гасится.

Следует отметить, что электрическая дуга, возникающая в электроустановках класса напряжения выше 1 кВ, может достигать нескольких метров, что очень опасно для обслуживающего персонала. Поэтому для защиты человека от действия электрической дуги есть специальные комплекты, которые состоят из дугостойкого костюма, перчаток и шлема со специальным защитным щитком.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector