Dilmet-pro.ru

Стройка и Ремонт
19 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Диод шоттки принцип работы

Диоды Шоттки — устройство, виды, характеристики и использование

Диоды Шоттки или более точно — диоды с барьером Шоттки — это полупроводниковые приборы, выполненные на базе контакта металл-полупроводник, в то время как в обычных диодах используется полупроводниковый p-n-переход.

Диод Шоттки обязан своим названием и появлением в электронике немецкому физику изобретателю Вальтеру Шоттки, который в 1938 году, изучая только что открытый барьерный эффект, подтвердил выдвинутую ранее теорию, согласно которой хоть эмиссии электронов из металла и препятствует потенциальный барьер, но по мере увеличения прикладываемого внешнего электрического поля этот барьер будет снижаться. Вальтер Шоттки открыл этот эффект, который затем и назвали эффектом Шоттки, в честь ученого.

Исследуя контакт металла и полупроводника можно видеть, что если вблизи поверхности полупроводника имеется область обедненная основными носителями заряда, то в области контакта этого полупроводника с металлом со стороны полупроводника образуется область пространственного заряда ионизированных акцепторов и доноров, при этом реализуется блокирующий контакт — тот самый барьер Шоттки. В каких условиях возникает этот барьер? Ток термоэлектронной эмиссии с поверхности твердого тела определяет уравнение Ричардсона:

Создадим условия, когда при контакте полупроводника, например n-типа, с металлом термодинамическая работа выхода электронов из металла была бы больше, чем термодинамическая работа выхода электронов из полупроводника. В таких условиях, в соответствии с уравнением Ричардсона, ток термоэлектронной эмиссии с поверхности полупроводника окажется больше, чем ток термоэлектронной эмиссии с поверхности металла:

В начальный момент времени, при контакте названных материалов, ток от полупроводника в металл превысит обратный ток (из металла в полупроводник), в результате чего в приповерхностных областях как полупроводника, так и металла — станут накапливаться объемные заряды — положительные в полупроводнике и отрицательные — в металле. В контактной области возникнет электрическое поле, образованное этими зарядами, и будет иметь место изгиб энергетических зон.

Под действием поля термодинамическая работа выхода для полупроводника возрастет, и возрастание будет происходить до тех пор, пока в контактной области не уравняются термодинамические работы выхода, и соответствующие им токи термоэлектронной эмиссии применительно к поверхности.

Картина перехода к равновесному состоянию с формированием потенциального барьера для полупроводника p-типа и металла аналогична рассмотренному примеру с полупроводником n-типа и металла. Роль внешнего напряжения — регулировка высоты потенциального барьера и напряженности электрического поля в области пространственного заряда полупроводника.

На рисунке выше представлены зонные диаграммы различных этапов формирования барьера Шоттки. В условиях равновесия в области контакта токи термоэлектронной эмиссии выравнялись, вследствие эффекта поля возник потенциальный барьер, высота которого равна разности термодинамических работ выхода: φк = ФМе — Фп/п.

Очевидно, вольт-амперная характеристика для барьера Шоттки получается несимметричной. В прямом направлении ток растет по экспоненте вместе с ростом прикладываемого напряжения. В обратном направлении ток не зависит от напряжения. В обоих случаях ток обусловлен электронами в качестве основных носителей заряда.

Диоды Шоттки поэтому отличаются быстродействием, ведь в них исключены диффузные и рекомбинационные процессы, требующие дополнительного времени. С изменением числа носителей и связана зависимость тока от напряжения, ибо в процессе переноса заряда участвуют эти носители. Внешнее напряжение меняет число электронов, способных перейти с одной стороны барьера Шоттки на другую его сторону.

Вследствие технологии изготовления и на основе описанного принципа действия, — диоды Шоттки имеют малое падение напряжения в прямом направлении, значительно меньшее чем у традиционных p-n-диодов.

Здесь даже малый начальный ток через контактную область приводит к выделению тепла, которое затем способствует появлению дополнительных носителей тока. При этом отсутствует инжекция неосновных носителей заряда.

У диодов Шоттки поэтому отсутствует диффузная емкость, поскольку нет неосновных носителей, и как следствие — быстродействие достаточно высокое по сравнению с полупроводниковыми диодами. Получается подобие резкого несимметричного p-n-перехода.

Таким образом, прежде всего диоды Шоттки — это СВЧ-диоды различного назначения: детекторные, смесительные, лавинно-пролетные, параметрические, импульсные, умножительные. Диоды Шоттки можно применять в качестве приемников излучения, тензодатчиков, детекторов ядерного излучения, модуляторов света, и наконец — выпрямителей высокочастотного тока.

Обозначение диода Шоттки на схемах

Диоды Шоттки сегодня

На сегодняшний день диоды Шоттки распространены весьма широко в электронных устройствах. На схемах они изображаются по иному, чем обычные диоды. Часто можно встретить сдвоенные выпрямительные диоды Шоттки, выполненные в трехвыводном корпусе свойственном силовым ключам. Такие сдвоенные конструкции содержат внутри два диода Шоттки, объединенные катодами или анодами, чаще — катодами.

Диоды в сборке имеют очень близкие параметры, поскольку каждая такая сборка изготавливается единым технологическим циклом, и в итоге их рабочий температурный режим одинаков, соответственно выше и надежность. Прямое падение напряжения 0,2 — 0,4 вольта наряду с высоким быстродействием (единицы наносекунд) — несомненные преимущества диодов Шоттки перед p-n-собратьями.

Особенность барьера Шоттки в диодах, применительно к малому падению напряжения, проявляется при приложенных напряжениях до 60 вольт, хотя быстродействие остается непоколебимым. Сегодня диоды Шоттки типа 25CTQ045 (на напряжение до 45 вольт, на ток до 30 ампер для каждого из пары диодов в сборке) можно встретить во многих импульсных источниках питания, где они служат в качестве силовых выпрямителей для токов частотой до нескольких сотен килогерц.

Нельзя не затронуть тему недостатков диодов Шоттки, они конечно есть, и их два. Во-первых, кратковременное превышение критического напряжения мгновенно выведет диод из строя. Во-вторых, температура сильно влияет на максимальный обратный ток. При очень высокой температуре перехода диод просто пробьет даже при работе под номинальным напряжением.

Ни один радиолюбитель не обходится без диодов Шоттки в своей практике. Здесь можно отметить наиболее популярные диоды: 1N5817, 1N5818, 1N5819, 1N5822, SK12, SK13, SK14. Эти диоды есть как в выводном исполнении, так и в SMD. Главное, за что радиолюбители их так ценят — высокое быстродействие и малое падение напряжения на переходе — максимум 0,55 вольт — при невысокой цене данных компонентов.

Редкая печатная плата обходится без диодов Шоттки в том или ином назначении. Где-то диод Шоттки служит в качестве маломощного выпрямителя для цепи обратной связи, где-то — в качестве стабилизатора напряжения на уровне 0,3 — 0,4 вольт, а где-то является детектором.

В приведенной таблице вы можете видеть параметры наиболее распространенных сегодня маломощных диодов Шоттки.

Теория цепей. Магнитные цепи Основы теории электромагнитного поля

Принцип действия, параметры и характеристики диода Шоттки и р-i-n диода.

6.1. Концептуальная диаграмма

В третьей главе «Математическое моделирование электромеханических процессов специальных электроприводов» разработана математическая модель электромеханических процессов специальных систем электроприводов (САЦ, САЦС и САЦР), позволяющее получить зависимости между напряжениями и токами статора и ротора и определить мгновенный момент и величину пульсаций момента.

6.2. Принцип действия, параметры и характеристики диода Шоттки и р-i-n диода

Физические исследования контакта металл — полупроводник стимулировались прогрессом в области точечно-контактных полупроводниковых выпрямителей. В предвоенные годы немецкий ученый Шоттки получил основные математические соотношения, описывающие электрические характеристики этого контакта, вследствие чего подобную структуру стали называть барьером Шоттки. Однако многие замечательные свойства, предсказываемые теорией для барьера Шоттки, практически наблюдать не удалось из-за очень резкого отличия точечных диодов от идеализированной модели (значительные механические напряжения в приконтактной области, наличие промежуточных окисных слоев, мультиконтактность и т. п.). Этим, а также большими успехами приборов с p-n-переходами и объясняется тот ограниченный интерес в отношении исследований контакта металл — полупроводник и создания приборов на его основе.

Рис. 6.1. Схема контакта металл — полупроводник (а) и его энергетическая диаграмма при нулевом (б), прямом (г) и обратном (д) смещении

Лишь в последние годы в связи с небывалыми успехами полупроводниковой технологии стало возможным получение структур, близких к идеальному барьеру Шоттки, и практическое конструирование на этой основе различных приборов. Это обусловливает тот огромный интерес, который проявляют к барьеру Шоттки специалисты в области физики, технологии и применения полупроводниковых приборов.

Рассмотрим особенности работы диода с барьером Шоттки на основе контакта металла с полупроводником n-типа для случая, когда работа выхода металла φ0м больше, чем работа выхода φ0п полупроводника (рис. 6.1 а). При образовании контакта электроны переходят из материала с меньшей работой выхода в материал с большей работой выхода, в результате чего уровни Ферми металла и полупроводника выравниваются. При этом полупроводник оказывается заряженным положительно, а возникающее внутреннее электрическое поле препятствует переходу электронов в металл. Между металлом и полупроводником возникает контактная разность потенциалов Uк = φ0м — φ0п.

Благодаря разности работ выхода металла и полупроводника между ними происходит обмен электронами. Электроны из полупроводника, имеющего меньшую работу выхода, переходят в металл с большей работой выхода. В равновесном состоянии (рис. 6.1 а) металл заряжается отрицательно, в результате чего возникает электрическое поле, прекращающее однородный переход электронов.

Из-за резкого различия концентраций свободных электронов по обе стороны от контакта практически все падение напряжения приходится на приконтактную область полупроводника. Приложенное внешнее напряжение изменяет высоту барьера лишь со стороны полупроводника. Электроны зоны проводимости отталкиваются возникшим контактным нолем. Создается обедненный слой с пониженной концентрацией подвижных носителей. Около контакта вследствие изгиба границ зон полупроводник n-типа переходит в полупроводник p-типа.

Распределение электрического поля (рис. 6.1 в) и объемного заряда в этом случае описывается теми же уравнениями, что и для резкого p-n-перехода. В полупроводнике возникает область, обедненная основными носителями заряда с пониженной проводимостью, ширина которой lп зависит от уровня легирования полупроводника. В состоянии равновесия поток электронов (основных носителей полупроводника) в металл уравновешивается потоком электронов из металла в полупроводник.

Читать еще:  Холодильники, какой фирмы самые надежные в 2018 году

При прямом смещении (рис. 6.1 г) потенциальный барьер со стороны полупроводника понижается и число переходов электронов в металл увеличивается. При обратном смещении (рис. 6.1 д), напротив, ток из полупроводника уменьшается, стремясь с ростом напряжения к нулю. Ток электронов из металла все время остается неизменным: роль его незначительна при прохождении прямого тока, им же обусловлен ток утечки при обратном смещении. Величина этого обратного тока в приборах с барьером Шоттки порядка единиц микроампер.

В реальных контактах линейная зависимость высоты барьера от работы выхода металла наблюдается редко ввиду того, что на поверхности полупроводника из-за ее неидеальности имеются поверхностные заряды. При нанесении металла такой поверхностный заряд экранирует влияние металла, вследствие чего высота потенциального барьера в основном определяется состоянием поверхности полупроводника. Кроме того, на свойства контакта металл — полупроводник влияют токи утечки, токи генерации — рекомбинации носителей заряда в обедненной области и возможность туннельного перехода электронов в случае сильнолегированного полупроводника. В целом вольт-амперная характеристика контакта с барьером Шоттки в широких пределах изменения тока соответствует характеристике типа:

где a — коэффициент «неидеальности». При обратном смещении ток через контакт обычно увеличивается с ростом напряжения. Особенностью выпрямляющих контактов металл — полупроводник, отличающих их от p-n-переходов, является отсутствие инжекции неосновных носителей в полупроводник при прямых напряжениях.

Таким образом, в диоде Шоттки отсутствуют накопление неосновных носителей заряда в областях диода при прямом напряжении и рассасывание этого заряда при изменении знака напряжения. Это улучшает быстродействие диода, т. е. частотные и импульсные свойства. Время восстановления обратного сопротивления с диодом Шоттки при использовании кремния и золота — примерно 10 нс и меньше.

Достоинством диода Шоттки при современном уровне технологии является также то, что его вольт-амперная характеристика оказывается очень близкой к характеристике идеализированного p-n-перехода. В формуле (6.1) коэффициент n близок к единице (a ≈1,04), в то время как у обычных диодов a =1,5-2,5. Это означает, что прямая ветвь характеристики диода Шоттки идет круче, чем у обычных диодов.

Шумы диода Шоттки определяются дробовым шумом и тепловым шумом последовательного сопротивления областей и контактов. Вследствие малого влияния неосновных носителей на процессы в диоде Шоттки вклад генерационно-рекомбинационных шумов в дробовый шум оказывается незначительным. Кроме того, уменьшается последовательное сопротивление областей диода, так как одна из областей является металлом. Поэтому уровень шумов диода Шоттки оказывается меньше, чем в аналогичных по применению точечных диодах на p-n-переходах.

Применяются диоды Шоттки в качестве детекторных и смесительных диодов вплоть до миллиметрового и субмиллиметрового диапазонов волн. Изготавливаются они из арсенида галлия. Для уменьшения емкости диаметр контакта уменьшается до 1 мкм и менее. Смесители на диодах Шоттки используются до 300 ГГц. На частоте 170 ГГц коэффициент шума диода Шоттки Кш = 4,8-5,5 дБ, а охлаждение до 20 К снижает его примерно вдвое.

Диоды с барьером Шоттки могут быть использованы для умножения и преобразования частот. Умножение может быть основано как на нелинейной зависимости сопротивления диода от напряжения (нелинейное сопротивление), так и на нелинейной зависимости емкости от напряжения (нелинейная емкость). Эффективность умножения при использовании диода Шоттки на основе арсенида галлия примерно в 3 раза выше, чем у кремниевых диодов с прижимным контактом при одинаковых с ним входной частоте (3 — 4 ГГц) и кратности умножения (три). Особенно существенны преимущества диода Шоттки при преобразовании слабых сигналов. Эти диоды используются также и как быстродействующие переключательные диоды.

Варианты разновидностей диодов Шоттки приведены на рис. 6.2.

Принцип работы диода Шоттки

Что такое диод Шоттки? Это полупроводниковый элемент, название которого соответствует фамилии знаменитого физика и изобретателя, работавшего в Германии. Специфика диода Шоттки заключается в минимальном снижении напряжения. Эта низкая динамика наблюдается при прямом введении компонента в цепь. На практике используется при обратном напряжении с небольшими значениями (в среднем 3-10В), при возможности применять в промышленности с гораздо большими величинами значение может достигать до 1200В.


Внешний вид

Разновидности диодов Шоттки

Все полупроводниковые элементы, работающие по принципу барьера Шоттки, делятся по мощности на:

  • высокой;
  • средней;
  • малой мощности.


Сдвоенный диод

На рисунке показан сдвоенный элемент, являющий собой по сути два элемента. Они расположены в едином корпусе, в одно целое соединены катодом или анодом. В этом случае чаще всего имеется три вывода диода. При идентичных параметрах собранных таким образом элементов обеспечивается надежность работы всего устройства, в первую очередь, за счет единой температуры.

Особенности и принцип работы диода Шоттки

Как работает диод Шоттки? В чем принципиальные отличия его работы от аналогов с другим барьерным переходом?

Устройство диода Шоттки имеет отличие от других элементов того же назначения использованием барьером в виде перехода между металлом и полупроводником. У аналогов обычно работает с этой же целью p-n переход. Так в первом случае имеется односторонняя электропроводность. В зависимости от того, какой конкретно металл выбран для перехода в элементе, различаются и характеристики элемента. Чаще всего выбирается кремний, возможно применение арсенида галлия. Реже могут применяться сплавы вольфрама, платины и других материалов.

Кремний — самый распространенный и надежный элемент в диодах Шоттки, с ним конструкция надежно работает в условиях высокой мощности. Изделие стабильнее в работе, чем другие полупроводниковые аналоги, а простота изготовления и устройства диода Шоттки делают его очень доступным вариантом.

Металл-полупроводник: принцип работы перехода


Структура элемента

Принцип работы диода Шоттки основан на особенностях барьера. Эффект Шоттки при контакте компонентов, из которых выполнен непосредственно полупроводник и металл заключается в образовании бедного электронами участка. Последний имеет вентильные характеристики, аналогичные p-n взаимодействию. Контактный слой останавливает носителей заряда. По сравнению с другими типами полупроводниковых вентилей такое решение обладает:

  • минимальным обратным током;
  • стремящейся к нулю собственной емкостью;
  • обратным напряжением самой низкой допустимой величины;
  • при прямом включении — меньшим снижением напряжения (до 0.5 В в сравнении с 2-3 В в случае аналога).

В переходной зоне нет лишних носителей заряда. Благодаря этому там не возникают диффузии и рекомбинации, что наблюдается в контактных слоях p-n перехода. Так обеспечивается минимальная собственная емкость диода Шоттки, что делает возможным с большей эффективностью использовать его в устройствах с высокими и сверхчастотами.

Преимущества и недостатки диода Шоттки

Несомненными преимуществами подобных полупроводниковых изделий являются:

  • надежное удерживание электротока;
  • минимальная емкость барьера обеспечивает длительную эксплуатацию;
  • быстродействие.

Высокие показатели обратного тока — основной недостаток устройств с диодом Шоттки. Из-за этого при скачке обратного тока диод может выйти из строя.

Важно! При внедрении подобных диодов в цепи с высокой мощностью электротока создается риск теплового пробоя.

Маркировка и схема диода Шоттки

На схеме преподносится почти как стандартный полупроводниковый диод, но имеются и отличия.


Обозначения диодов

В маркировке используется набор символов, они всегда обозначаются сбоку изделия. Используются международные стандарты, но в зависимости от производителя маркировка может отличаться.

Сочетание цифр и букв на корпусе не всегда понятно, но в радиотехнических справочниках всегда можно найти точную расшифровку.

Работа в ИБП

Подобные элементы очень широко используются в импульсных схемах, в приборах для стабилизации напряжения, а также в блоках питания. Преимущественно выбираются сдвоенные элементы, имеющие в одном корпусе общий катод.

Использование в ИБП сдвоенного диода Шоттки с общим катодом является признаком высокого качества и надежности блока питания.

При этом сгоревший элемент относится к частым и типовым неисправностям импульсного устройства. Нерабочее состояние возникает при:

  • утечке на корпус;
  • электроприборе.

Встроенная защита приводит к блокировке ИБП в обоих случаях. При утечке возможно присутствие незначительных нестабильных пульсаций напряжения на выходе, а также слабые «подергивания» вентилятора. В случае пробоя напряжения в блоке питания полностью исключены. Так можно определить вероятную причину нерабочего состояния диода Шоттки, но для окончательного решения понадобится диагностика.

Для диагностики следует выполнить шаги:

  1. Выпаять элемент и схемы.
  2. Осмотреть на предмет механических повреждений, присутствия следов разрушительных химических реакций.
  3. Выполнить проверку мультиметром.


Проверка мультиметром

Отличие процедуры от диагностики обычных диодов заключается в необходимости демонтажа сборки или элемента, иначе проверить его состояние будет очень сложно. Утечку диагностировать сложнее. При использовании типичного мультиметра может отображаться полная работоспособность элемента при работе прибора в режиме «диод». Потому лучше устанавливать режим «омметр» и заменить элемент при демонстрации сопротивления. Показатель 5 кОм не устанавливает точно неисправность диода, но лучше считать его подозрительным и выполнить замену. Доступная стоимость диодов Шоттки позволяет сделать это практически в любой момент без особых трат.

Важно! Если для проверки работоспособности диода Шоттки используется типовой мультиметр, нужно учитывать указанный сбоку показатель электротока.

Применение

Отличительные особенности и принцип работы диода Шоттки обусловливают его широкое применение в быту и в промышленности. Кроме блоков питания компьютера, его часто можно встретить в схемах:

  • бытовых электроприборов;
  • стабилизаторов напряжения;
  • во всем спектре радио- и телеаппаратуры;
  • в другой электронике.

Подобные элементы используются в современных батареях и транзисторах, работа которых обеспечивается сенечной энергией.

Читать еще:  Таблица сечения проводов

Такое универсальное использование элемента связано с способностью полупроводникового диода с эффектом Шоттки во много раз усиливать работоспособность любого прибора и увеличивать его эффективность. Обратное сопротивление электротока восстанавливается, за счет чего он сохраняется в электрической сети. Потери динамики напряжения минимизируются. Также диод Шоттки вбирает несколько видов излучений.

Диод с барьером Шоттки — неприхотливый и простой элемент, обеспечивающий бесперебойную работу множества современных приборов. Доступный, надежный, отличается широкой сферой применения благодаря особенностям в своей конструкции.

ПРИНЦИП РАБОТЫ ДИОДА

Все мы прекрасно знаем что такое полупроводниковый диод, но мало кто из нас знает о принципе работы диода, сегодня специально для новичков я поясню принцип его работы. Диод как известно одной стороной хорошо пропускает ток, а в обратном направлении — очень плохо. У диода есть два вывода — анод и катод. Ни один электронный прибор не обходится без применения диодов. Диод используют для выпрямлении переменного тока, при помощи диодного моста который состоит из четырех диодов, можно превратить переменной ток в постоянный, или с использованием шести диодов превратить трехфазовое напряжение в однофазовое, диоды применяются в разнообразных блоках питания, в аудио — видео устройствах, практически повсюду. Тут можно посмотреть фотографии некоторых видов диодов.

На выходе диода можно заметить спад начального уровня напряжения на 0,5-0,7 вольт. Для более низковольтных устройств по питанию используют диод шоттки, на таком диоде наблюдается наименьший спад напряжения — около 0,1В. В основном диоды шоттки используют в радио передающих и приемных устройствах и в других устройствах работающих в основном на высокой частоте. Принцип работы диода с первого взгляда достаточно простой: диод — полупроводниковый прибор с односторонней проводимостью электрического тока.

Вывод диода подключенный к положительному полюсу источника питания называют анодом, к отрицательному — катодом. Кристалл диода в основном делают из германия или кремния одна область которого обладает электропроводимостью п — типа, то есть дырочная, которая содержит искуственно созданный недостаток электронов, друггая — проводимости н — типа, то есть содержит избыток электронов, границу между ними называют п — н переходом, п — в латыни первая буква слова позитив, н — первая буква в слове негатив. Если к аноду диода подать положительное напряжение, а к катоду отрицательное — то диод будет пропускать ток, это называют прямым включением, в таком положении диод открыт, если подать обратное — диод ток пропускать не будет, в таком положении диод закрыт, это называют обратным подключением.

Обратное сопротивление диода очень большое и в схемах его принимают ка диэлектрик (изолятор). Продемонстрировать работу полупроводникового диода можно собрать простую схему которая состоит из источника питания, нагрузки (например лампа накаливания или маломощный электрический двигатель) и самого полупроводного диода. Последовательно подключаем все компоненты схемы, на анод диода подаем плюс от источника питания, последовательно диоду, то есть к катоду диода подключаем один конец лампочки, другой конец той же лампы подключаем к минусу источника питания. Мы наблюдаем за свечением лампы, теперь перевернем диод, лампа уже не будет светится поскольку диод подключен обратно, переход закрыт. Надеюсь каким то образом это вам поможет в дальнейшем, новички — А. Касьян (АКА).

Что такое диод Шоттки, его характеристики и способ проверки мультиметром

Развитие электроники требует все более высоких стандартов от радиодеталей. Для работы на высоких частотах используют диод Шоттки, который по своим параметрам превосходит кремниевые аналоги. Иногда можно встретить название диод с барьером Шоттки, что в принципе означает то же самое.

Конструкция

Отличается диод Шоттки от обыкновенных диодов своей конструкцией, в которой используется металл-полупроводник, а не p-n переход. Понятно, что свойства здесь разные, а значит, и характеристики тоже должны отличаться.

Действительно, металл-полупроводник обладает такими параметрами:

  • Имеет большое значение тока утечки,
  • Невысокое падение напряжения на переходе при прямом включении,
  • Восстанавливает заряд очень быстро, так как имеет низкое его значение.

Диод Шоттки изготавливается из таких материалов, как арсенид галлия, кремний, намного реже, но также может использоваться – германий. Выбор материала зависит от свойств, которые нужно получить, однако в любом случае максимальное обратное напряжение, на которое могут изготавливаться данные полупроводники, не выше 1200 вольт – это самые высоковольтные выпрямители. На практике же намного чаще их используют при более низком напряжении – 3, 5, 10 вольт.

На принципиальной схеме диод Шоттки обозначается таким образом:

Но иногда можно увидеть и такое обозначение:

Это означает сдвоенный элемент: два диода в одном корпусе с общим анодом или катодом, поэтому элемент имеет три вывода. В блоках питания используют такие конструкции с общим катодом, их удобно использовать в схемах выпрямителей. Часто на схемах рисуется маркировка обычного диода, но в описании указывается, что это Шоттки, поэтому нужно быть внимательными.

Диодные сборки с барьером Шоттки выпускаются трех типов:

1 тип – с общим катодом,

2 тип – с общим анодом,

3 тип – по схеме удвоения.

Такое соединение помогает увеличить надежность элемента: ведь находясь в одном корпусе, они имеют одинаковый температурный режим, что важно, если нужны мощные выпрямители, например, на 10 ампер.

Но есть и минусы. Все дело в том, что малое падение напряжения (0,2–0,4 в) у таких диодов проявляется на небольших напряжениях, как правило – 50–60 вольт. При более высоком значении они ведут себя как обычные диоды. Зато по току эта схема показывает очень хорошие результаты, ведь часто бывает необходимо – особенно в силовых цепях, модулях питания – чтобы рабочий ток полупроводников был не ниже 10а.

Еще один главный недостаток: для этих приборов нельзя превышать обратный ток даже на мгновение. Они тут же выходят из строя, в то время как кремниевые диоды, если не была превышена их температура, восстанавливают свои свойства.

Но положительного все-таки больше. Кроме низкого падения напряжения, диод Шоттки имеет низкое значение емкости перехода. Как известно: ниже емкость – выше частота. Такой диод нашел применение в импульсных блоках питания, выпрямителях и других схемах, с частотами в несколько сотен килогерц.

Вольтамперная характеристика светодиода (ВАХ)

ВАХ такого диода имеет несимметричный вид. Когда приложено прямое напряжение, видно, что ток растет по экспоненте, а при обратном – ток от напряжения не зависит.

Все это объясняется, если знать, что принцип работы этого полупроводника основан на движении основных носителей – электронов. По этой же самой причине эти приборы и являются такими быстродействующими: у них отсутствуют рекомбинационные процессы, свойственные приборам с p-n переходами. Для всех приборов, имеющих барьерную структуру, свойственна несимметричность ВАХ, ведь именно количеством носителей электрического заряда обусловлена зависимость тока от напряжения.

Миниатюризация

С развитием микроэлектроники стали широко применяться специальные микросхемы, однокристальные микропроцессоры. Все это не исключает использования навесных элементов. Однако если для этой цели использовать радиоэлементы обычных размеров, то это сведет на нет всю идею миниатюризации в целом. Поэтому были разработаны бескорпусные элементы – smd компоненты, которые в 10 и более раз меньше обычных деталей. ВАХ таких компонентов ничем не отличается от ВАХ обычных приборов, а их уменьшенные размеры позволяют использовать такие запчасти в различных микросборках.

Компоненты smd имеют несколько типоразмеров. Для ручной пайки подходят smd размера 1206. Они имеют размер 3,2 на 1,6 мм, что позволяет их впаивать самостоятельно. Другие элементы smd более миниатюрные, собираются на заводе специальным оборудованием, и самому, в домашних условиях, их паять невозможно.

Принцип работы smd компонента также не отличается от его большого аналога, и если, к примеру, рассматривать ВАХ диода, то она в одинаковой степени будет подходить для полупроводников любого размера. По току изготавливаются от 1 до 10 ампер. Маркировка на корпусе часто состоит из цифрового кода, расшифровка которого приводится в специальных таблицах. Протестировать на пригодность их можно тестером, как и большие аналоги.

Использование на практике

Выпрямители Шоттки используется в импульсных блоках питания, стабилизаторах напряжения, импульсных выпрямителях. Самыми требовательными по току – 10а и более – это напряжения 3,3 и 5 вольт. Именно в таких цепях вторичного питания приборы Шоттки используют чаще всего. Для усиления значений по току их включают вместе по схеме с общим анодом или катодом. Если каждый из сдвоенных диодов будет на 10 ампер, то получится значительный запас прочности.

Одна из самых частых неисправностей импульсных модулей питания – выход из строя этих самых диодов. Как правило, они либо полностью пробиваются, либо дают утечку. В обоих случаях неисправный диод нужно заменить, после чего проверить мультиметром силовые транзисторы, а также замерить напряжения питания.

Тестирование и взаимозаменяемость

Проверить выпрямители Шоттки можно так же, как и обычные полупроводники, так как они имеют похожие характеристики. Мультиметром необходимо прозвонить его в обе стороны – он должен показать себя так же, как и обычный диод: анод-катод, при этом утечек быть не должно. Если он показывает даже незначительное сопротивление – 2–10 килоом, это уже повод для подозрений.

Проверка диода Шоттки мультиметром

Диод с общим анодом или катодом можно проверить как два обычных полупроводника, соединенных вместе. Например, если анод общий, то это будет одна ножка из трех. На анод ставим один щуп тестера, другие ножки – это разные диоды, на них ставится другой щуп.

Читать еще:  Электрическая цепь и ее элементы

Можно ли его заменить на другой тип? В некоторых случаях диоды Шоттки меняют на обычные германиевые. К примеру, Д305 при токе 10 ампер давал падение всего 0,3 вольта, а при токах 2–3 ампера их вообще можно ставить без радиаторов. Но главная цель установки Шоттки – это не малое падение, а низкая емкость, поэтому заменить получится не всегда.

Как видим, электроника не стоит на месте, и дальнейшие варианты применения быстродействующих приборов будет только увеличиваться, давая возможность разрабатывать новые, более сложные системы.

Диоды Шоттки: описание, принцип работы, схема, основные параметры, применение, характеристики

  • Информация
  • Сертификаты
  • Вопрос-ответ
  • Справочники
  • Информация
  • Сертификаты
  • Вопрос-ответ
  • Справочники

Диоды Шоттки: описание, принцип работы, схема, основные параметры, применение, характеристики

В конце 30-х годов XX века немецкий физик Вальтер Шоттки обнаружил, что внешнее электрическое поле заставляет свободные электроны покидать зону проводимости и в буквальном смысле выходить из твёрдого тела. Данная квантовая зависимость впоследствии была названа именем её первооткрывателя и теперь известна, как эффект Шоттки.

Несмотря на то, что открытие германского учёного относится к области теоретической физики, оно находит применение в практической радиотехнике и лежит в основе функциональности таких радиокомпонентов, как диоды Шоттки. Их отличие от обычных электрических вентилей заключается в отсутствии классического полупроводникового p-n-перехода. Его роль играет контакт между полупроводником и металлом.

Металл и полупроводник: особенности контакта.

В контактной области полупроводниковых и металлических материалов эффект Шоттки приводит к образованию в полупроводнике слоя, сильно обеднённого электронами. Он обладает вентильными свойствами, присущими полупроводниковому p-n-переходу. Эта зона представляет собой преграду для носителей заряда, поэтому данные радиокомпоненты часто называют диодами с барьером Шоттки.

Элементы отличаются от обычных полупроводниковых вентилей следующими качествами:
  1. пониженное падение напряжения при прямом смещении;
  2. незначительная собственная ёмкость;
  3. малый обратный ток;
  4. низкое допустимое обратное напряжение.

При прямом смещении разность потенциалов на диоде Шоттки не превышает 0,5 В, тогда как на обычном выпрямительном вентиле падение напряжения составляет около 2-3 В. Это объясняется небольшим сопротивлением переходного участка между полупроводником и металлом.

Хорошие частотные характеристики диодов Шоттки обусловлены отсутствием в переходной зоне неосновных носителей заряда. Из-за этого в контактной области не протекают обычные для чисто полупроводникового p-n-перехода процессы диффузии и рекомбинации дырок и электронов. Следовательно, собственная ёмкость этого слоя стремится к нулю. Данное свойство делает диоды с барьером Шоттки предпочтительными для использования в высоко- и сверхвысокочастотных схемах, а также аппаратуре с импульсными режимами работы – всевозможных цифровых устройствах, системах управления электроникой и импульсных блоках питания.

Низковольтные диоды.

Особенность диодов Шоттки состоит в том, что они являются низковольтными. Если приложенная разность потенциалов превышает некоторый допустимый уровень, то в соответствии с квантовыми законами происходит пробой, который в обычном полупроводниковом радиокомпоненте может быть туннельным, лавинным или тепловым. После первых двух диод восстанавливается и продолжает исправно работать. Тепловой пробой означает фатальную поломку.

В диодах с барьером Шоттки пробой всегда бывает только тепловым. Такова особенность металло-полупроводникового перехода. При большом обратном смещении элемент выходит из строя и нуждается в замене. Этим, кстати, объясняется сильная чувствительность диодов Шоттки к статическому электричеству – при их монтаже и обслуживании радиоаппаратуры с этими элементами необходимо заземлять спецодежду и инструменты.

Однако чувствительность этих радиокомпонентов не всегда является их недостатком. Например, благодаря этой характеристике диоды с барьером Шоттки используются в особо чувствительных гетеродинах, которые получают способность обрабатывать радиосигналы очень малой мощности.

Основные параметры.

  1. Максимальное постоянное обратное напряжение;
  2. Максимальное импульсное обратное напряжение;
  3. Максимальный (средний) прямой ток;
  4. Максимальный импульсный прямой ток;
  5. Постоянное прямое напряжение на диоде при заданном прямом токе через него;
  6. Обратный ток диода при предельном обратном напряжении;
  7. Максимальная рабочая частота диода;
  8. Время обратного восстановления;
  9. Общая емкость диода.

Производство диодов Шоттки.

В качестве полупроводниковой составляющей используются стандартные материалы – кремний, германий и арсенид галлия. На них в процессе изготовления радиокомпонентов напыляются такие металлы, как золото, серебро, палладий, вольфрам. Именно эти элементы таблицы Менделеева обеспечивают достаточно высокий потенциальный барьер, определяющий функциональность диодов Шоттки.

Германиевые радиокомпоненты показывают высокую устойчивость к изменению температурного режима, поэтому данный материал чаще кремния и арсенида галлия используется при производстве диодов для мощных схем питания. Зато кремниевые и галлиевые элементы демонстрируют лучшие частотные параметры.

Что такое диод Шоттки и принцип его работы

Большинство современных радиосхем использует диод Шоттки. Его действие основано на физическом эффекте, который открыл немецкий ученый Вальтер Шоттки, поэтому он и носит его имя. Этот элемент имеет много таких же параметров, как и обычные диоды, но есть у него и существенные отличия.

  • Принцип действия и обозначение
  • Положительные и отрицательные качества
  • Сфера применения и популярные модели
  • Диагностика возможных неисправностей

Принцип действия и обозначение

Если обычный полупроводниковый диод основан на свойствах p-n перехода, то принцип работы диода Шоттки основан на свойствах перехода при контакте металла и полупроводника. Такой контакт получил в физике получил название «барьер Шоттки». В качестве полупроводника чаще всего используется арсенид галлия (GaAs), а из металлов применяют в основном следующие:

  • вольфрам;
  • платину;
  • серебро;
  • золото;
  • палладий.

На радиотехнических схемах обозначение диода Шоттки похоже на обозначение обычного полупроводникового элемента, но есть заметное различие: со стороны катода, где есть небольшая перпендикулярная к основной линии черта, у нее дополнительно загибаются края в разные стороны под прямым углом или с плавным изгибом.

Иногда на принципиальных схемах затруднительно графически обозначить этот элемент, его рисуют, как обычный диод, а в спецификации дополнительно указывают тип.

Положительные и отрицательные качества

Полупроводниковый элемент Шоттки широко применяется в различных электронных и радиотехнических устройствах из-за своих положительных свойств. К ним относят следующие:

  • очень низкое падение напряжения на переходе, максимальное значение которого составляет всего 0,55 В;
  • большая скорость срабатывания;
  • малая емкость барьера (перехода), что дает возможность применять диод Шоттки в схемах с высокой частотой тока.

Но есть и несколько отрицательных свойств, которые необходимо учитывать при использовании этого радиотехнического элемента. А именно:

  • мгновенный необратимый выход из строя даже при кратковременном повышении обратного напряжения выше предельного значения;
  • возникновение теплового пробоя на обратном токе из-за выделения тепла;
  • часто встречаются утечки диодов, которые определить затруднительно.

Сфера применения и популярные модели

Полупроводниковый радиотехнический элемент Шоттки характеризуется отсутствием диффузной емкости из-за отсутствия неосновных носителей. Поэтому этот элемент в первую очередь — это СВЧ-диод широкого спектра применения. Его используют в роли следующих элементов:

  • тензодатчик;
  • приемник излучения;
  • модулятор света;
  • детектор ядерного излучения;
  • выпрямитель тока высокой частоты.

Малое падение напряжения, к сожалению, наблюдается у большинства этих элементов при рабочем напряжении в пределах 55−60 В. Если напряжение выше этого значения, то диод Шоттки имеет такие же качества, как и обычный полупроводниковый элемент на кремниевой основе. Максимум обратного напряжения обычно составляет порядка 250 В, но есть особые модели, которые выдерживают и 1200 В (например, VS-10ETS12-M3).

Из сдвоенных моделей популярной среди радиолюбителей является 60CPQ150. Этот радиоэлемент имеет максимум обратного напряжения 150 В, а каждый отдельный диод из сборки рассчитан на пропускание тока в прямом включении силой 30 А. В мощных импульсных источниках питания иногда можно встретить модель VS-400CNQ045, у которой сила тока на выходе после выпрямления достигает 400 А.

У радиолюбителей пользуются популярностью диоды Шоттки серии 1N581x. Такие образцы, как 1N5817, 1N5818, 1N5819 имеют максимальный номинальный прямой ток 1 А, а обратное напряжение у них составляет 20−40 В. Падение напряжения на барьере (переходе) в диапазоне от 0.45 до 0.55 В. Также в радиолюбительской практике встречается элемент 1N5822 с прямым током до 3 А.

На печатных платах используют миниатюрные диоды серий SK12 — SK16. Несмотря на очень небольшие размеры, они выдерживают прямой ток до 1 А, а напряжение «обратки» составляет от 20 до 60 В. Есть и более мощные диоды, например, SK36. У него прямой ток доходит до 3 А.

Диагностика возможных неисправностей

Существует всего три вида возможных неисправностей. Это пробой, обрыв и утечка. Если первые два вида можно диагностировать самостоятельно в домашних условиях с помощью обычного мультиметра, то третья неисправность в домашних условиях практически не поддается диагностике.

Для надежного определения выхода из строя диода его необходимо выпаять из схемы, иначе шунтирование через другие элементы схемы будет искажать полученные показания. При пробое элемент ведет себя как обычный проводник. При замере его сопротивления в обоих направлениях измерительный прибор будет составлять «0». При обрыве деталь вообще не пропускает электрический ток в любом направлении. Его сопротивление равно бесконечности в каждом направлении.

Косвенным признаком утечки в элементе является его нестабильная работа. Иногда может срабатывать встроенная защита в блоке питания компьютера, монитора и т. д.

Мультиметром определить утечку невозможно, так как она возникает при работе элемента, а замеры необходимо производить при его отключении от схемы.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector