Рамочная антенна из коаксиального кабеля
Рамочная антенна из коаксиального кабеля
При работе таких антенн в режиме передачи применяют два вида связи антенны с фидерной линией — через магнитную петлю (рис. 3.11) и через схему гамма-согласования (рис. 3.116). Обратите внимание, что и петля связи, и точка подключения экрана кабеля при гамма-согласовании находятся точно напротив подстроечного конденсатора Это необходимо для сохранения симметрии рамки.
Рис. 3.11. Питание передающей магнитной рамки
Обычно диаметр петли связи составляет 0,2 от диаметра основной рамки. С помощью этой петли можно обеспечить удовлетворительное согласование во всем рабочем диапазоне частот магнитной рамки. Надо стараться, чтобы провод для петли не был тоньше того, из которого сделана магнитная рамка.
Второй вид согласования — гамма-согласование. Толщина провода, используемого в его схеме, примерно в 2-5 раз тоньше провода рамки. Его радиус составляет 0,85-0,95 от радиуса основной рамки. Длина L в схеме не должна превышать 0,2 от периметра рамки и чаще всего выбирают значение 0,1. Гамма-согласование требует более тщательной, по сравнению с петлей связи, настройки для разных диапазонов, но при этом обладает более высоким КПД. При работе рамки в двух-трех диапазонах для гамма-согласования всегда можно найти оптимальные размеры. Если к рамке имеется свободный доступ, то для настройки удобно использовать замыкающие перемычки. В любом случае, когда приходится иметь дело с магнитными рамками, рекомендуется устанавливать согласующее устройство.
Если рамка служит только в качестве приемной, то проблем с согласованием обычно не бывает. Оно осуществляется с помощью размещаемого непосредственно около рамки транзисторного усилителя, с выхода которого отфильтрованный и усиленный ВЧ сигнал по коаксиальному кабелю поступает на вход приемника.
РАЗМЕРЫ И ИСПОЛНЕНИЕ МАГНИТНЫХ РАМОЧНЫХ АНТЕНН
Характерные размеры передающей рамочной антенны приведены в табл. 3.2.
Таблица 3.2.
Периметр рамки, см | 50 | 80 | 100 | 200 | 500 | 400 |
Высшая рабочая частота, МГц | 29 | 21 | 14 | 7 | 3,5 | 1,9 |
При таких размерах рамка эффективно работает на трех соседних диапазонах длин волн, например 10, 15 и 20 или 40, 80 и 160 м. Ее эффективность на верхней частоте максимальна, а на более низких снижается. Приведенные в этой таблице данные соответствуют магнитной рамке без экрана. Если имеется электростатический экран, то следует учитывать емкость между ним и внутренним проводом, которая уменьшает резонансную частоту рамки. Для удовлетворительной работы периметр рамки должен быть не менее 0,08 от рабочей длины волны.
С помощью конденсатора рамку можно настроить на еще более низкие частоты, однако в режиме передачи подобная конструкция станет уже совсем мало эффективной.
Как было показано выше, входное сопротивление магнитных рамок невелико. Это затрудняет согласование антенных систем, в которых магнитная рамка работает на передачу, без ее настройки в резонанс с рабочей частотой.
Рамочная антенна имеет свою собственную индуктивность. Ее можно рассчитать по известной формуле или измерить с помощью соответствующих приборов. Присоединив к разомкнутым концам рамки переменный конденсатор, получим обычный колебательный контур, который можно настраивать в широком диапазоне частот. На рис. 3.11 показаны две схемы связи рамки с кабелем: через петлю связи (а) и с применением гамма-согласования (б); под ними изображены соответствующие аналоги на сосредоточенных элементах в виде индуктивной и трансформаторной связи с контуром.
В колебательном контуре, образованном рамкой и конденсатором, электрическое поле сосредоточено внутри конденсатора, а магнитное — вокруг рамки. Результаты решения задачи нахождения оптимальных размеров рамки и емкости конденсатора были приведены выше. Из них следует, что длина рамки должна составлять приблизительно 0,08 от длины волны, а емкость конденсатора — около 30-50 пФ в диапазоне 2-30 МГц.
Рамка меньшей длины будет излучать менее эффективно из-за низкой добротности. Последняя, как известно, определяется выражением: Q=(L/C)/Rп, где L — индуктивность рамки, Гн; C — емкость на конце рамки, Ф; Rп — сопротивление потерь в рамке, Ом.
Одновитковая рамка, в отличие от многовитковых, имеет максимальное отношение L/C и минимальное сопротивление потерь. Рамку, длина которой больше, чем 0,08 рабочей длины волны, возможно не удастся настроить в резонанс, вследствие чего ее согласование станет проблематичным.
Поэтому, для работы в режиме передачи целесообразно применять одновитковую рамку. При настройке ее в резонанс, когда от передатчика поступает значительная мощность и рамка хорошо согласована, по ней могут протекать ВЧ токи в сотни ампер. Поэтому желательно, чтобы передающая магнитная рамочная антенна была выполнена из медной трубы большого диаметра. Можно отполировать ее поверхность до зеркального блеска. Конденсатор переменной емкости обязательно должен быть высококачественным, лучше — без трущихся контактов. В крайнем случае, можно обойтись обычным спаренным конденсатором переменной емкости, подключенным к рамке только статорными (неподвижными) секциями (рис. 3.12). Не следует применять конденсаторы с твердым диэлектриком из-за их низкой добротности.
Рис. 3.12. Обычный конденсатор переменной емкости в магнитной рамке
Заметим, что иногда встречаются сообщения об использовании радиолюбителями для работы в режиме передачи ненастраиваемых магнитных рамочных антенн.
Задача эффективного согласования такой рамки с передатчиком даже теоретически очень сложна и выходит за рамки обычной радиолюбительской практики, поэтому этот тип антенн здесь не рассматривается. Не рекомендуем радиолюбителям, не имеющим соответствующей теоретической и практической подготовки, пользоваться такими конструкциями, так как результат будет неутешительным.
Когда магнитные рамки служат в качестве приемных антенн, проблема КПД стоит не так остро. Поэтому для них подходят конденсаторе с твердым диэлектриком или воздушные с трущимися контактами. Рамку делают многовитковой, что позволяет уменьшить ее размеры. Для рамки можно использовать и тонкий провод. Часто применяют коаксиальный кабель, внутренняя жила которого образует рамку, а оплетка выполняет функции ее экрана.
Источник: Григоров И.Н. Практические конструкции антенн. СОГЛАСОВАНИЕ РАМКИ И ПИТАЮЩЕГО КАБЕЛЯ
Индуктивная связь и согласование также широко распространены благодаря простоте реализации. Чаще всего применяется вариант, показанный на рис. 20.7. Внутри большой петли размещают малую индуктивную петлю с соотношением диаметров 5:1. Благодаря симметричной связи через симметрирующий трансформатор на кольцевом сердечнике 1:1 можно подсоединять 50-омный коаксиальный кабель.
Рис. 20.7. Рамочные антенны с индуктивной связью:
а — симметричное подключение с симметрирующим трансформатором
на кольцевом сердечнике 1:1; б — несимметричная связь;
в — индуктивная связь с экранированием (детальный эскиз).
При несимметричной связи (рис. 20.7б) коаксиальный кабель подключается непосредственно. Электрически целесообразный способ индуктивной связи представлен на рис. 20.7в. Здесь показан только связующий виток из коаксиального кабеля с разрывом его экрана посреди витка. Экран части правой половины шлейфа припаивается к основанию большого кольца (см. рисунок), и в этом месте антенну заземляют. Слегка деформируя шлейф из коаксиального кабеля, добиваются тонкой настройки антенны на минимальный КСВ. Считается, что диаметр d должен быть тем меньше, чем выше рабочая добротность антенны.
Источник: К.Ротхаммель. Антенны. Том 2. Издание 11. 2001г.
Рамочная антенна из коаксиального кабеля
Две активные КВ антенны
Представленная в [2] антенна относится к типу так называемых приемных активных рамочных антенн. Рамка этой антенны позволяет принимать не менее 4-х ВЧ коротковолновых радиолюбительских диапазонов. Выходное сопротивление антенного устройства рассчитано на подключение кабеля с волновым сопротивление 75 Ом. Для уменьшения влияния массивных металлических предметов устройство следует устанавливать подальше от них.
Рис.1
Расстояние между концами рамки составляет 10 мм. Сама рамка подключаются к схеме устройства через разъем и закреплена на фотоштативе.
Для настройки в резонанс в устройстве применен 2-х секционный переменный конденсатор. На различных КВ диапазонах к нему подключаются дополнительные емкости: 14 — 30 мГц — S1 и S2 разомкнуты; 7 мГц — S1 разомкнут, S2 замкнут; 3,5 мГц — S1 замкнут, S2 разомкнут. Дроссели L1,L2 выполнены на кольцах и содержат 25 витков провода диаметром 0,2. ВЧ-трансформатор содержит 3х10 витков такого же провода.
Активная рамочная антенна потребляет ток около 8 мА при напряжении источника питания 9 В. В ней применены транзисторы VT1,VT2 типа КП302 А, Б, они заменимы на КП303 Д, Г. VT3 — КТ306 (316, 325).
Elektronisches Jarbuch 1990 (свободный перевод RA0CCN).
К сожалению в описании приведенной конструкции, взятой с сайта «Радиомания — сайт радиолюбителей», не приводится конструкция самой рамки и некоторые другие сведения. Но в интернете и радиолюбительских СМИ наиболее часто встречаются такие конструкции рамок (рис.2 — 4):
Рис.2. Квадрат со стороной 1 м из медной трубки d=25мм,
связь с TRX через петлю связи из 50-омного кабеля (не показана).
Рис.3. Конструкция DF9IV [4]. Кольцо Д=400 мм из медной трубки д=12 мм, внутри которого провод в изоляции сечением 8 мм кв. Cвязь с TRX через петлю связи.
Эта конструкция повторена В.Брагиным (UA9KEE) [5], только вместо трубки применен коаксиальный кабель РК-75-17-31 d=25,1 мм и внутренним проводником d=4 мм.
Рис.4. Конструкция RV1AU, кольцо D=420 мм из кабеля d=18 мм. Cвязь с TRX через петлю связи.
Любая из приведенных конструкций рамки (без петли связи, естественно) может работать в описанной выше схеме активной КВ антенны. С учетом дифференциального входа усилителя требуется лишь сделать отвод от середины рамки и соединить его с общим проводом усилителя.
Данные такой конструкции рамки-кольца приведены в материале (Joachim Swender, Aktive Schlifanenne fur Empfang. — Funkamauter, 1999, № 7, S. 787 — 789), опубликованного в [1].
Таким образом, для схемы, показанной на рис.1, номинал индуктивности дросселей L1, L2 — около 100 мкГ. Кольцо трансформатора 13х7,9х6,4 мм с начальной магнитной проницаемостью 800.
Поскольку принцип построения схемы в указанной публикации тот же, что и в приведенной в начале обзора, приведу кратко текст статьи «Активная КВ антенна» из [1].
Рис.5
Антенна работает в полосе частот от 6 до 30 мГц. Выходное сопротивление антенны 50 Ом. Она представляет собой рамку (см. рис.5), которая настраивается на рабочую частоту конденсатором переменной емкости. К рамке подключен усилитель с дифференциальным входом, выполненный по каскодной схеме. Применение полевых транзисторов на входе обеспечивает высокое входное сопротивление и малую входную емкость усилителя, что позволяет полностью подключить рамку к усилителю с высоким коэффициентом передачи устройства в целом, а также дает возможность без переключений перекрыть большую полосу частот. В усилителе использованы высокочастотные полевые транзисторы и биполярные СВЧ транзисторы с граничной частотой около 5 гГц.
Качественно выполненный выходной трансформатор Т1 позволяет получить полосу частот усилителя 1 . 100 мГц. Усилитель имеет коэффициент передачи около 1 при работе на нагрузку 50 Ом. Для повышения входного сопротивления усилителя на высокочастотном крае полосы рабочих частот антенны в цепи стоков полевых транзисторов VT1 и VТ3 включен дроссель L1.
Напряжение питания на базах биполярных транзисторов (около 4 В) стабилизировано цепочкой диодов VD1 — VD6. Заменить их стабилитронами нельзя, так как высокочастотный шум, генерируемый ими в режиме стабилизации, может свести на нет все достоинства усилителя.
Усилитель можно питать от малогабаритной батареи напряжением 9 В («Крона»). Потребляемый ток не более 3 мА.
Обмотки трансформатора Т1 содержат: I — 3 витка, II и III — по 20 витков литцендрата.
Переменный конденсатор С1 от радиовещательного приемника размещен в разрезе рамки в виде кольца из медной трубки D=1 м. Диаметр трубки d=16 мм. К рамке подключают только выводы от статоров, что минимизирует влияние руки при настройке антенны на рабочую частоту. Перекрытие у антенны по частоте большое, поэтому переменный конденсатор надо снабдить хорошим верньерным устройством и хотя бы простой шкалой.
Рамка закреплена вертикально на деревянном основании, на котором установлены конденсатор С1 и остальные элементы усилителя. Точно от середины рамки вдоль поддерживающей деревянной стойки идет провод отвода от рамки к усилителю.
Высокая добротность рамки (на частоте 6 мГц — около 1000) обеспечивает высокий коэффициент передачи устройства в целом и хорошую избирательность. Кроме того, от мешающих станций можно отстроиться, используя пространственную селекцию с помощью оптимальной ориентации рамки антенны.
Надеюсь, что поданные в такой редакции материалы и ссылки подвигнут радиолюбителей на повторение или создание новых конструкций активных антенн.
Коротковолновая приёмная МАГНИТНАЯ АНТЕННА
Начнём мы наши подробные обсуждения с причиндала, без которого не обходится ни одно из радиоэлектронных устройств, принимающих или передающих сигнал в эфир — антенны.
ШИРОКОПОЛОСНАЯ НЕ ФЕРРИТОВАЯ МАГНИТНАЯ АНТЕННА.
Так была озаглавлена тема на форуме http://www.radioscanner.ru/forum/topic34670.html.
Представленная антенна является полностью магнитной, то есть реагирует только на магнитную составляющую поля радиоволн, и представляет собой 80-ти сантиметровый кусок коаксиального кабеля RG-213 со снятой внешней оплёткой в центральной части полотна.
Связь с приёмником осуществляется через симметрирующий трансформатор — балун на ферритовых трубках от кабелей мониторов.
Бедолага, автор был основательно поклёван злобными участниками форума за нетрадиционный подход, не соответствующий уровню их научной мысли.
— А где конденсатор переменной ёмкости?
— А где эффективность в широкой полосе?
— А как вообще можно что-то конструировать, не понимая самых азов теории? — вопрошали они строго, оставляя автора с его серьёзными намерениями наедине со справочным пособием Карла Ротхаммеля.
И только слабые адресные призывы адекватных участников к терпимости и продолжению дискуссии без нездорового заряда агрессии возвращали его в суровую реальность форумных дебатов.
То что так хорошо начиналось в начале темы, растянулось на 10 страниц бурчаний «ни о чём» и свелось к выуживанию у автора сведений по конструктиву балуна.
Наконец, по многочисленным просьбам ленивых, автор исполнил священный долг перед сообществом и раскрыл секретную информацию, а в самом конце ещё и добавил фотографии с описанием конструкции трансформатора.
1. Из двух ферритовых трубок склеить бинокль.
Чем меньше будут ферриты, тем меньше будет транс.
2. Свиваем две жилы, делаем первый виток.
3. Наматываем 2.5 витка. Важно делать витки поочерёдно. Виток одного, виток другого. Получаем катушку для связи с петлёй антенны (пойдёт к центральным проводникам кабеля) со средней точкой (пойдёт к земле).
4. Вкладываем провод для катушки связи. Делаем 5 витков.
Получаем катушку связи для приёмника.
5. Соединяем начало катушки связи со средней точкой катушки петли антенны.
Эти соединённые выводы подпаиваем к земле выходного разъёма, оплетке кабеля и корпусу коробки антенны.
6. После намотки трансформатора желательно проверить правильность сделанного.
Подключаем трансформатор к приёмнику и поочерёдно хватаемся руками за верхние выводы петлевой катушки.
Если всё правильно, уровень шума будет одинаковым на обоих выводах.
Если неохота мотать трансформатор, можно воспользоваться схемой, опубликованной в журнале Elektor Electronics — №1/ 2000, с.20-21 и подсоединить её к центральной жиле кабеля.
Работать будет вполне сносно, хотя симметрия получится похуже, чем у балуна. Зато дифференциальный усилитель (Т1, Т2) имеет коэффициент усиления 10 дБ вплоть до 30 МГц, а буфер Т3 позволяет соединять выход устройства с входом приёмника не только напрямую, но и через 75-омный кабель любой длины.
Автор: Подобные конструкции широкополосных нерезонансных комнатных антенн довольно часто мелькают в различных источниках информации.
В силу своей теоретической неправильности они не получили такого широкого развития, как скажем, резонансные магнитные антенны, а зря — работают они не намного хуже. При этом отсутствие необходимости постоянно перестраивать их по частоте вслед за валкодером приёмника даёт им неоспоримое преимущество перед резонансными собратьями.
А эффективность.
Да какая там эффективность? Она примерно такая же, как у 5-ти метрового куска провода, выброшенного в окно — проверено личным опытом.
Хотите улучшить её приёмные свойства? Милости просим на страницу ссылка на страницу .
Радио-как хобби
Делаем рамочную активную антенну для простых коротковолновых радиоприемников.
Есть ли возможность слушать эфир людям, у которых нет места для установки больших, полноразмерных антенн? Один из выходов- рамочная активная антенна, установленная прямо на столе, возле радиоприемника.
О практическом изготовлении подобной антенны и будет рассказано в этой статье…
Итак, малогабаритная рамочная активная антенна, это антенна состоящая из одного или нескольких витков медного провода ( трубки) или даже коаксиального кабеля. В сети есть предостаточно примеров таких антенн.
Свою антенну я изготовил в виде вертикальной конструкции, которая устанавливается на столе возле радиоприемника. Рамочная активная антенна представляет собой этакую большую катушку индуктивности, изготовлена из медного провода диаметром 1,2 мм и содержит четыре витка. Количество витков выбрано наобум)). Диаметр изготовленной рамочной антенны примерно 23 см:
Для уменьшения собственной емкости витки антенны намотаны с шагом 10 мм. Для поддержания постоянства шага намотки, а также придания всей конструкции необходимой жесткости применены промежуточные распорки, изготовленные из стеклотекстолита толщиной 2 мм. Эскиз распорок приводится ниже:
Так выглядит промежуточная распорка в антенне:
Для придания устойчивости все этой конструкции применены опорные стойки, также изготовленные из стеклотекстолита,и которые служат как бы ножками антенны:
Медный провод продевается в соответствующие отверствия распорок и стоек, и фиксируется в них капелькой цианакрилатного клея.
Так выглядит стойка в изготовленном экземпляре антенны:
Общий вид изготовленной антенны:
Ради интереса подключил изготовленную рамочную антенну к антенному анализатору АА-54.
Обнаружился собственный резонанс антенны на частоте 14,4 МГц.
На фото ниже дисплей антенного анализатора АА-54 в момент измерения параметров рамочной антенны на частоте резонанса:
Как видим, импеданс антенны на частоте 14,4 МГц составляет 13,5 Ом, активное сопротивление-7,3 Ома, реактивное сопротивление относительно небольшое-минус 11,4 Ома и носит емкостной характер.
Индуктивность рамочной антенны ( а она, собственно, и представляет собой катушку индуктивности) составила 7,2 мкГн.
Это все, что касается изготовления и параметров собственно рамочной антенны.
Но, поскольку антенна активная, значит в ее составе имеется и антенный усилитель.
При выборе схемы антенного усилителя руководствовался принципом подобрать что-либо не слишком заумное и сложное, и простое в изготовлении.
Гугл, как всегда, вывалил гору схем)) Не долго думая, выбрал одну из них, которая мне показалась интересной.
Схема этого антенного усилителя была опубликована еще где-то в начале 2000-х годов в одном из зарубежных журналов. Мне этот усилитель показался интересным с той точки зрения, что он имеет симметричный вход-как раз подходящий для моей рамочной антенны.
Принципиальная схема антенного усилителя:
В оригинале в этом усилителе были применены транзисторы серии BF- что-то типа BF4**.
В наличии таких не оказалось, поэтому собрал усилитель из того, что было под рукой-2N3904, 2N3906, S9013.
Собственно, усилительный каскад собран на транзисторах VT1VT2. На транзисторе VT3 собран эмиттерный повторитель для согласования высокого выходного сопротивления усилителя с относительно невысоким входным сопротивлением радиоприемников.
Усилитель питается напряжением 6 В. Режимы работы транзисторов устанавливаются подбором резистора R3. Напряжения на электродах транзисторов указаны на схеме.
Усилитель заработал практически сразу. Попробовал было установить в этом усилителе транзисторы КТ315,Кт361-но эффективность работы его сразу заметно ухудшилась, поэтому от такого варианта отказался. Антенный усилитель я собрал на монтажной плате, но, подготовил и печатную плату для него:
В качестве приемника для натурных испытаний активной рамочной антенны с усилителем был выбран приемник прямого преобразования на микросборке 2ТС613Б.
Подключив выход антенного усилителя ко входу приемника и включив питание, сразу отметил увеличение уровня шума. Это и не удивительно-антенный усилитель вносит свой вклад…
Последним этапом испытаний было подключение собственно рамочной антенны ко входу антенного усилителя и попробовать принять какие-либо сигналы с эфира..
И это удалось! Хорошо слышны много станций работающих с однополосной модуляцией на диапазоне 40 м. Понятно, что станции слышны не так громко как на полноразмерную антенну. Да и нельзя сравнивать нормальную антенну с рамочной антенной, находящейся рядом с приемником. Также при работе активной рамочной антенны наблюдается несколько повышенный уровень шумов. С этим нужно мириться- это плата за малогабаритность. Также желательно такую антенну располагать подальше от всевозможных источников помех- зарядки, энергосберегающие лампочки, сетевое оборудование и т. п.
Выводы: такая антенна вполне себе имеет право на жизнь, станций принимает достаточно много. Для тех, у кого нет возможности повесить большую, длинную антенну, это может быть выходом из ситуации.
Видео демонстрации работы рамочной активной антенны на диапазоне 7 МГц:
Рамочная антенна из коаксиального кабеля
Сетевой провод изгибают так, чтобы получилась прямоугольная рамка; разомкнутые концы освобождают от изоляции на 20 мм, расклепывают до толщины 0,5 мм и в каждом просверливают отверстие диаметром 2,2 мм. Из оргстекла вырезают Т-образную ручку-изолятор. Легче вырезать отдельно изолятор и ручку (заштрихованная часть), а потом соединять их заклепками или винтами. В изоляторе просверливают два отверстия диаметром 2,2 мм. Далее двумя винтами крепят рамку к ручке-изолятору. На верхней части рамки по краям прикрепляют маленькие крючки из эмалированной проволоки диаметром 0,7-0,8 мм. Антенна готова.
Подключать рамочную антенну к коаксиальному кабелю следует с помощью симметрирующего устройство (СУ), ослабляющего токи радиочастоты на наружной поверхности экрана. Для изготовления СУ необходимы коаксиальный кабель достаточной длины, короткие проводники из многожильного телефонного кабеля в полиэтиленовой изоляции и изолента.
Процесс изготовления и подключения следующий (рис. 2).
1. С одного конца коаксиального кабеля снимают изоляцию примерно на 20 мм.
2. Проводник длиной 1n=142 +8 мм (8 мм на кончики для подключения к антенне) наматывают виток к витку на зачищенный конец кабеля. Измеряют длину намотки R, после чего проводник сматывают.
3. Кабель освобождают от изоляции на 5 R. По всей длине экранной оболочки кабеля прорезают полосу шириной 1 мм. Если экранная оболочка сделана из фольги, это удобно сделать бритвенным лезвием.
4. Отступив от края изоляционной оболочки на 5R, на экранную оболочку кабеля наматывают два проводника длиной по 150 мм.
5. Центральную жилу коаксиального кабеля освобождают от изоляции на 2R.
6. Обмотку из двух проводов закрепляют изолентой. Кончики зачищают и соединяют вместе, затем подключают к рамке в точках А-А1. К точке А (или А1) подключают центральную жилу кабеля. Рамочная антенна готова к использованию.
Перемещая рамку, определяют место уверенного приема. После этого антенну можно закрепить в штативе с помощью рукоятки или на натянутой леске посредством крючков. Описанная антенна уже длительное время используется автором, обеспечивая хорошее качество телевизионного приема.
IT-блоги • Магнитная рамочная антенна на диапазоны 20/30/40 метров
Магнитная рамочная антенна или магнитная рамка (magnetic loop antenna) — это особая антенна, которая заметно отличается от классических диполей, вертикалов и волновых каналов. Несмотря на похожее название, антенна имеет мало общего с рамочной антенной. Главной отличительной чертой магнитной рамки является длина полотна в пределах от 1/8 λ до 1/4 λ. Антенна безусловно является компромиссной. Тем не менее, магнитные рамки довольно сносно работают как на прием, так и на передачу.
Конструкция
Принцип работы магнитной рамочной антенны с диаграммами направленности, вариантами согласования и всяким таким хорошо освещены в книгах об антеннах, коих написано немало. Есть даже книги, посвященные исключительно магнитным рамкам, см рекомендуемые ссылки в конце поста. Если вас интересует теория, а также происхождение названия антенны, начать можно со статьи в Википедии. Также очень рекомендую книгу Антенны КВ и УКВ Игоря Гончаренко. Далее будут озвучены кое-какие особенности устройства магнитных рамок. Однако в целом эта статья об изготовлении и тестировании одной конкретной антенны, а не о теории работы всего класса антенн.
Сразу покажу, что у меня получилось:
Диаметр основной петли я выбрал 1.2 метра, как подходящий для выхода на 20 метров, и в то же время достаточно небольшой, чтобы с ним было комфортно работать. В качестве полотна использована оплетка коаксиального кабеля RG213. В полотне магнитной рамки текут большие токи, даже при работе с умеренной мощностью. Поэтому полотно делают из толстого коаксиального кабеля, медных труб, алюминиевого профиля или чего-то такого. Магнитная рамка наиболее эффективна, если полотно образует ровный круг, но антенны также делают в форме восьмиугольника, шестиугольника, ромба, квадрата или треугольника.
Полотно крепится к секциям от телескопической удочки, соединенным крест-накрест, при помощи изоленты. Сам же каркас стоит на штативе для фотоаппарата. Соединены они также при помощи изоленты. Штатив какой-то недорогой, буквально первый попавшийся мне в магазине. Точную модель уже не вспомню.
Антенна запитывается с помощью коаксиального кабеля RG58. Для подавления синфазного тока я использовал проверенный метод. Восемь витков кабеля были намотаны на ферритовом кольце FT240-31. Кольцо можно видеть в середине фотографии. Вопрос о синфазных токах и их подавлении ранее подробно рассматривался в статье Самодельный диполь: теория и практика.
Будучи расположенной вертикально, как на фото, антенна сильнее всего излучает влево и вправо (что полностью противоречит интуиции, во всяком случае, моей). По форме диаграмма направленности похожа на «восьмерку», как у диполя. Эту же антенну можно расположить горизонтально. Тогда она превратиться во всенаправленную — диаграмма направленности по форме будет примерно как у вертикала. Заметьте, что усиление магнитной рамки всегда измеряется в отрицательных dBi. На то она и компромиссная антенна.
В нижней части антенны расположен КПЕ:
Это КПЕ с заявленной емкостью от 22 до 360 пФ на напряжение до 1 кВ. Напомню, что в свое время мной было приобретено три таких КПЕ. Пара использовалась в самодельном тюнере, выполненным по Т-образной схеме и еще один, который я брал, как запасной, был применен в антенне Фукса. После того, как тюнер из первой статьи был переделан на LC-схему, у меня остался один лишний КПЕ. Он и был использован в магнитной рамке.
Антенна в сущности представляет собой резонансный LC-контур. Полотно антенны образует катушку индуктивности с воздушным сердечником из одного витка. Соответственно, при помощи КПЕ подбирается резонанс на интересующей частоте. Конденсатор обязательно нужен на высокое напряжение, 1 кВ минимум. Судя по информации в сети, этого типично хватает для работы с мощностью от 10 до 50 Вт, в зависимости от частоты и вида модуляции. Для работы с большей мощностью применяют вакуумные КПЕ.
Fun fact! Магнитные рамки также делают из двух и более витков. Минусы такого подхода — сужение полосы и без того узкополосной антенны, уменьшение излучаемой энергии, а также рост напряжения на КПЕ, что еще сильнее ограничивает подводимую к антенне мощность.
Конденсатор приклеен к куску оргстекла при помощи эпоксидки. В оргстекле просверлены отверстия, в которые продеты нейлоновые стяжки. С их помощью осуществлено крепление оргстекла к штативу, а также полотна антенны к оргстеклу.
В верхней части антенны расположена согласующая петля, также сделанная из RG213. Подключение питающего кабеля к согласующей петле выполнено так:
Я использовал недорогой переходник с BNC на две клеммы, купленный на eBay. Соответственно, к концам петли были припаяны клеммы M6. В остальном конструкция аналогична той, что использовалась для крепления КПЕ. На пятна зеленой краски на оргстекле не обращайте внимания. Просто оно использовалось в качестве подкладки, когда я что-то красил.
Согласующая петля имеет длину 20% от длины основной петли. Длина последней составляет 3.77 метра, соответственно длина согласующей петли — 0.75 метра. Она крепится к верхней части антенны на все той же изоленте. Никакого непосредственного соединения между двумя петлями нет. Меньшая петля нужна по той причине, что магнитная рамка имеет низкое входное сопротивление. Его нужно как-то согласовать с 50 Ом коаксиального кабеля. Согласующая петля вместе с основной петлей образуют трансформатор, которой именно это и делает.
Выходим в эфир
Настройка антенны на конкретную частоту осуществляется вращением КПЕ. Грубую настройку можно произвести либо по уровню эфирного шума, либо по индикатору напряженности поля. Для более точной настройки необходим антенный анализатор.
Оказалось, что антенна неплохо настраивается сразу на три радиолюбительских диапазона:
Антенна довольно узкополосная. Это общее свойство всех магнитных рамок. Если вы работаете только в цифре и/или телеграфе, для вас это вряд ли будет проблемой. Для работы на поиск в SSB антенну придется постоянно перестраивать.
Отмечу, что КСВ зависит от того, где и как вы поставили антенну. Для работы магнитной рамке не требуется система противовесов. Также она мало чувствительна к высоте от земли. Однако она, как и любая другая антенна, чувствительна к находящимся поблизости металлическим предметам.
Мне удавалось найти положение, при котором КСВ вгонялся ровно в единицу, а также положение, при котором КСВ не опускался ниже двух. Приведенные графики можно воспринимать, как усредненные. Это не лучшие графики, которые я получал, но и не самые плохие. Также эти графики соответствуют положению антенны, в котором проводились тестовые радиосвязи.
Fun fact! Антенна настраивается на любую частоту от 4.5 МГц до 15.4 МГц. В этот интервал, помимо прочего, попадает радиолюбительский диапазон 60 метров, частоты 5.3515-5.3665 МГц. К сожалению, он не разрешен в России для работы на передачу, однако принимать вы можете все, что пожелаете. Также антенна может быть использована для приема номерных радиостанций, да и вообще чего угодно, что попадает в названный интервал частот.
Антенна была установлена в частном загородном доме, возле окна на втором этаже. Направление было выбрано на запад и на восток. Но поскольку на одном уровне с антенной находятся соседские дома, имеющие металлические крыши, сигнал все равно отразится куда угодно. Радиосвязи проводились в FT8 и телеграфе. Экспериментальным образом я установил, что антенна уверенно держит до 40 Вт в любом из этих режимов на любом из диапазонов. При использовании большей мощности что-то где-то начинает перегреваться (вероятно, изолятор в кабеле) и КСВ уплывает, а при мощности 80 Вт КПЕ гарантированно пробивает.
Важно! При работе на магнитную рамку с мощностью 40 Вт рекомендуется находится от нее на расстоянии не менее пяти метров. При использовании мощности 10 Вт или меньше это расстояние может быть уменьшено до двух метров.
Радиосвязи были успешно проведены в каждом из диапазонов. На 40 метрах в FT8 по расстоянию победила Великобритания, 2752 км. При этом был получен рапорт -16 дБ. В телеграфе победил Краснодар, расстояние 1250 км, рапорт 569. На 30 метрах в FT8 по дальности победила Италия, 2250 км с рапортом -24 дБ, в телеграфе — Норвегия, 1170 км с рапортом 579. На 20 метрах в FT8 победил город Омск, 2240 км с рапортом -25 дБ, в телеграфе — Израиль, 2660 км, рапорт 599 (по всей видимости, символический). Само собой разумеется, были проведены и другие радиосвязи. При этом на каждом из диапазонов я работал недолго, буквально по паре часов.
При работе в FT8 сайт pskreporter.info типично показывает что-то вроде:
Здесь показан отчет после 15 минут работы на общий вызов в диапазоне 40 метров. Это наихудшая картина, поскольку антенна наименее эффективна в этом диапазоне. На 30 и 20 метрах картина аналогичная, только на 20 метрах мой сигнал еще иногда долетает до США и Канады.
Полученные результаты превзошли все мои ожидания. Учитывая размеры магнитной рамки, тот факт, что она использовалась из дома, а также ограниченную мощность, считаю, что антенна показала себя прекрасно. Я намерен продолжить экспериментировать с этим видом антенн.
Заключение
- Magnetic Loop Antenna: Slightly Different Each Time, 4th Edition — интересная книжка, полностью посвященная магнитным рамкам. Многое из написанного выше, в том числе про безопасное расстояние до антенны и недостатки антенн из нескольких витков, я почерпнул из нее;
- Small Transmitting Loop Antennas, автор Steve Yates, AA5TB. Хорошая статья о магнитных рамках, а также подборка ссылок на эксперименты многих радиолюбителей;
- Есть несколько онлайн-калькуляторов магнитных рамок, например первый и второй. Я бы не стал слишком уж доверять подобным калькуляторам. Но чтобы прикинуть размеры и эффективность будущей антенны они сгодятся;
- В свое время мне очень понравилась серия статей о магнитных рамках в блоге esorensen.com. К сожалению, сейчас этот сайт доступен только на web.archive.org;
Магнитную рамку можно безусловно рекомендовать как интересный эксперимент для повторения. Также ее по достоинству оценят радиолюбители, не имеющие возможности установить полноразмерную КВ антенну на улице или на крыше. Магнитная рамка может быть интересным вариантом для выхода в эфир, будучи в гостях, живя в отеле или работая в полевых условиях. Но в последнем случае придется приложить чуть больше усилий, чтобы антенна была разборной, герметичной, и устойчивой к ветру. Еще на магнитную рамку можно провести радиосвязи в направлениях, в которых обычно не работает ваша основная антенна. Наконец, для многих радиолюбителей магнитная рамка, вероятно, будет одним из немногих способов выйти на диапазоны 80 и 160 метров.
В общем, антенна интересная, и определенно имеет свои области применения.
Рамочная антенна из коаксиального кабеля
Я снова и снова обращаюсь к моему маленькому балкончику и к тем ограничениям, которые он налагает на мои КВ антенны. Этот проект был разработан в результате экспериментов с целью выхода в эфир на диапазоне 80 метров, снова и снова, используя балкон. На сегодняшний день: я уже переделал уйму таких антенн с, каждый раз, неизменным одинаковым успехом. Рамочная антенна, конструкцию которой я предлагаю, может быть не самая эффективная, зато даёт возможность выхода в эфир на диапазоне 80 метров и идеально подходит для установки в лодках и для выездов на природу. КСВ у антенны составляет почти 1 : 1 в диапазоне частот 3,5…3,8 МГц. Антенна может быть построена и на диапазон 160 метров, но эффективность её работы может пострадать.
Конструкция
Выше показана конструкция антенны, представляющая собой рамку из пяти витков жилы от пяти-амперного силового кабеля. Жила должна состоять из нескольких проводков. В антенну входит свыше 20 метров провода, поэтому я распотрошил 7 метров трёх-фазного кабеля и провода спаял в единое целое. Конструкция антенны получилась довольно простой, судя по рисунку. Отметьте себе, что все длины проводов — приблизительные.
Что касается двух распорок антенны, так я применил как бамбуковую, так и покрытую пластиком жестяную трубу, того типа, что продают в магазинах садового инвентаря. Обе работают довольно хорошо, несмотря на разницу материалов. Если Вы будете использовать металлические распорки, то вставьте в отверстия какие-нибудь изоляторы, прежде чем пропускать в них провода. Я использовал пластиковые «соломки», через которые пьют в «мак-дональдсах». Это предотвратит «вгрызание» металла в изоляцию проводов и, также, улучшит общую изоляцию.
При указанных на рисунке размерах, каждый виток будет отделён от другого расстоянием в 4 см. Конструктивная ёмкость антенны между витками настроит антенну, примерно, на частоту 4,15 МГц, чуть выше диапазона 80 метров. Подстроечным УКВ конденсатором — Jackson 804 / 805 (с воздушным диэлектриком и хорошим зазором — UA9LAQ) с максимальной ёмкостью 25 пФ, антенна настраивается на диапазон частот 3,45 — 3,90 МГц. Зазор между пластинами конденсатора должен составлять несколько миллиметров. Добротность антенны весьма высока, поэтому, даже при небольшой выходной мощности передатчика, напряжение на конденсаторе может достигать значительной величины. (Чем больше величина ёмкости этого КПЕ, тем меньше нужно мотать провода, тем шире будет полоса пропускания, тем меньше эффективность антенны — UA9LAQ).
160 метров
Конденсатор постоянной ёмкости в 410 пФ, подключенный параллельно подстроечному, сдвинет частоту настройки антенны на 1,9 МГц. Это должен быть конденсатор высоковольтного (и высокочастотного — UA9LAQ) типа. Антенна позволит Вам выйти в эфир на 160-метровом диапазоне, но её эффективность будет весьма низка, хотя для местных связей этого вполне достаточно.
Подстройка
Если антенна после изготовления (без конденсатора) не настроена в районе частоты 4,15 МГц или (и), подстроечный конденсатор не позволяет настроить антенну в центре диапазона, следует провести коррекцию настройки антенны.
Если частота немного ниже нормы, то следует уменьшить межвитковую ёмкость антенны. Вставьте кусок пластика между витками с одной стороны, при этом витки будут чередоваться: один пройдёт с внутренней стороны рамки, другой с внешней и т. д. Такую операцию следует проделать и с других сторон антенны, если требуется больший подъём резонансной частоты антенны. Если требуется ещё больший подъём, то вставьте вторую трубку, по образу и подобию первой, и разведите их для получения большего подъёма частоты настройки антенны.
Если частота настройки антенны слишком высока, и нужно её опустить, то нужно добавить ёмкость конденсатора. Присоедините дополнительный высоковольтный конденсатор параллельно имеющемуся. Идеально подойдёт в качестве такого конденсатора кусок коаксиального кабеля. Отрезая кусочки кабеля, поднимают частоту настройки антенны до требуемой. Не торопитесь делать самопальные конденсаторы из скрученных проводов, их пробъёт даже при мощности передатчика в несколько ватт. А это будет означать, что Вы внесли в антенну дополнительные потери.
Играйтесь, — HARRY, Upplands Vasby, Sweden,
Harry Lythall (SM0VPO)
Свободный перевод с английского: Виктор Беседин (UA9LAQ) ua9laq@mail.ru
г. Тюмень ноябрь, 2004 г
Вас может заинтересовать:
Комментарии к статьям на сайте временно отключены по причине огромного количества спама.