Станок для очистки кабеля своими руками
Быстрая зачистка проводов от изоляции: выбор инструмента и секреты профессионалов как быстро зачистить провод своими руками (155 фото)
Даже любителям полежать на диване нередко приходится работать с электрическими проводами в квартире, гараже или в автомобиле. Чем только не выполняется такая, лишь на первый взгляд простая, операция: кухонным ножом, ножницами, тупыми кусачками, зажигалкой, а кое-кто — даже зубами.
Оплетка получается рваная, многие тонкие медные провода при этом теряются, что нарушает их и стандартную для конкретного вида токопроводимость и электрическое сопротивление. Они хуже соединяются между собой, в контактные клеммы и группы. И сбой в определенной схеме электропроводки произойдет именно в этом ослабленном звене. Поэтому вам просто необходим инструмент для зачистки проводов.
Краткое содержимое статьи:
Как же правильно удалить изоляцию без брака?
Защитное покрытие любого многожильного медного провода должно быть двоякофункциональным: крепким и при этом эластичным. Другими словами, не допускать на медь влаги и последующего окисления провода и легко поддаваться частичному необходимому съему с жилы. Вам поможет наша пошаговая инструкция, как правильно зачищать провода.
Какие повреждения стоит ожидать от непрофессиональной зачистки концевика провода?
- уменьшение сечения проводника;
- изломы части медных нитей в жиле и падение прочностной характеристики;
- скрытые дефекты при использовании тупых зачистных устройств – от растяжки и сгибания;
- потеря части медных ниток в многожилке;
- загрязнение остатками изоляции токопровода.
Зачищаем правильно
Все выше описанное – результат деятельности дилетантов в электроделе. Профессионалы могут только посмеяться над тем, как мужик рвет оплетку и так уже непрочными зубами или с трудом стаскивает ее с концевика заржавевшими кусачками. Это можно посмотреть на многочисленных интернетовских фото зачистки проводов.
Электрики с опытом владеют всеми секретами в работе с проводами, пользуются одним или несколькими инструментами для обнажения жил. И не только многонитевых, но и одинарных и толстых — медных или алюминиевых, для внутренней разводки и уличной.
Как устроен волоконный лазер
Волоконный лазерный аппарат представляет собой мощный станок для создания одномодового излучения с максимально высокими рабочими и качественными характеристиками. Оптоволоконные устройства для обработки материалов занимают порядка одной четвертой части всего рынка производственного оборудования.
Диаметр волоконного излучателя имеет микро значения, поэтому луч с абсолютной точностью вырезает острые углы и прочие сложные формы даже в листе металла повышенной твердости и большой толщины
Луч, сформированный в оптоволоконной среде, предназначен преимущественно для работы с металлическими поверхностями, поэтому в числе сфер применения данного типа оборудования выступают такие, как:
- авто-, судо- и ракетостроение;
- изготовление морских контейнеров и железнодорожных вагонов;
- станкостроение;
- робототехника;
- выпуск ювелирных изделий;
- маркировка и гравировка товаров;
- производство металлоконструкций для рекламной сферы, а также для строительства складских, торговых, жилых и прочих объектов;
- военно-промышленный комплекс.
Кроме металлов волоконный станок хорошо зарекомендовал себя в работе с камнем, стеклом и некоторыми видами пластика, поэтому его используют и в тех отраслях, которые массово используют работе эти материалы (рекламная индустрия, некоторые виды строительных работ и т. д.).
Достоинства оптоволоконных станков
Приоритетность в использовании твердотельного оборудования (именно к этой категории и относятся волоконные лазеры) перед любыми другими станками объясняется большим количеством экономических и качественных преимуществ, главными из которых являются следующие:
- прецизионная точность позиционирования на любых скоростных режимах;
- высокая мощность (1000 кВт не является пределом);
- возможность фокусировки луча до диаметра в несколько микрон с максимальной интенсивностью в точке реза;
- отличное качество луча с минимальными потерями при передаче и малым угловым расхождением;
- многофункциональность: лазер в состоянии не только резать, гравировать и перфорировать материалы, но и паять или выполнять сварочные работы, закалку, наплавку и очистку поверхностей от любых видов загрязнений;
- при создании отверстий луч не оставляет стружки, а край и стенки сквозного реза получаются идеально чистыми и гладкими;
- выходная мощность излучения ограничена только доступной мощностью источника оптической накачки;
- очень высокий рабочий ресурс, который может превышать 100000 часов;
- компактность, простота в транспортировке, минимальные пуско-наладочные работы и отсутствие необходимости в юстировке;
- воздушное охлаждение, что исключает все проблемы с заменой воды, размещением емкости для ее хранения и прочими проблемами водяных терморегуляторов;
- бесшумная работа и практически полное отсутствие производственных отходов.
Устройство волоконного лазера
Протяженность оптического кабеля может составлять от пары метров до 40, а то и 100 метра, поэтому для оптимизации пространства его скручивают кольцами и укладывают на поверхности оборудования
Волоконный принцип преобразования светового излучения в лазерное является одним из самых совершенных. Эффективность процесса получения полезной энергии составляет порядка 80-90%, при этом в ходе генерации лазера практически полностью исключены искажения волнового фронта и потери мощности луча на всем оптическом маршруте.
Система лазерообразования волоконных устройств состоит из двух основных частей: ламп накачки (полупроводниковых диодов) и оптического кабеля. Внутри последнего расположено светопроводящее волокно с сердцевиной из прозрачного кварца, легированного ионами редкоземельных элементов (в большинстве станков, используемых в промышленности, это иттербий). На концах центрального стержня чаще всего делают брэгговскую (дифракционную) решетку, представляющую собой штрихи, нанесенные определенным образом. Участки с насечками имеют измененную отражательную способность и выступают в качестве резонаторов, отражая свет, распространяющийся вдоль волокна, и поддерживая требуемую длину волны. Благодаря им луч сохраняет свою монохромность и прочие качественные характеристики.
Оптическое волокно в разрезе
Диодные лампы включаются при запуске станка и начинают подпитывать световод энергией, одновременно накачивая волокно на всей его протяженности и приводя сердцевину в рабочее состояние. Это активирует иттербиевое покрытие, которое начинает генерировать ионы, причем, благодаря брэгговской решетке, выступающей в роли отражающих зеркал, часть светового потока постоянно присутствует внутри волокна, порождая создание все новых атомов. Вторая половина световой энергии вырывается наружу стабильным и мощным лазерным лучом.
Сторона оптического кабеля, предназначенная для выхода лазерного потока, соединяется с подвижной режущей головкой, размещенной над поверхностью материала. Фокусирующая линза внутри головки автоматически или по командам управляющей программы сводит луч в световое пятно нужного диаметра и направляет его в зону реза.
Детальный видеообзор на профессиональный лазерный станок Wattsan 6040. Внутренее устройство и технические характеристики оборудования.
Побывали в гостях на производстве предприятия «АЛЬТАИР», которое успешно занимается производством деревянных игрушек и сувенирной продукции.
Видео с производства компании Пластфактория — наш уже постоянный клиент, который занимается POS-материалами и работает с крупными косметическими брендами.