Синхронный генератор принцип работы и устройство
Синхронный генератор принцип работы и устройство
Синхронный генератор состоит из двух основных частей: неподвижного статора (якоря) с помещенной в нем обмоткой и подвижного (вращающегося) ротора (индуктора) с обмоткой возбуждения. Назначение обмотки возбуждения состоит в том, чтобы создать в генераторе первичное магнитное поле для наведения в обмотке статора электродвижущей силы (э. д. е)… Если ротор сихронного генератора привести во вращение с некоторой скоростью V и возбудить от источника постоянного тока, то поток возбуждения будет пересекать проводники обмотки статора и в фазах обмотки будут индуктироваться переменные э. д. с. При подключении нагрузки к данной обмотке в ней возникнет вращающееся магнитное поле. Это поле статора генератора будет вращаться в направлении, вращения поля ротора и с такой же скоростью, как поле ротора, в результате чего образуется общее вращающееся магнитное поле.
Скорость вращения магнитного поля синхронного генератора зависит от числа пар полюсов. При заданной частоте чем больше число пар полюсов, тем меньше скорость вращения магнитного поля, т.е. скорость вращения магнитного поля обратно пропорциональна числу пар полюсов. Так, например, при заданной частоте /=50 гц скорость вращения магнитного поля равна 3000 об/мин при числе пар полюсов р= 1, 1500 об/мин при р = 2V 1000 об/мин при р = 3 и т. д.
Статор генератора (рис. 1, а) состоит из сердечника, набранного из тонких листов электротехнической стали. Для ограничения вихревых токов листы стали изолированы пленкой лака толщиной 0,08-0,1 мм и прочно спрессованы в виде пакета, называемого пакетом активной стали. В каждом листе стали, выштампованы фигурные вырезы, благодаря чему в пакете, собранном из таких листов, образуются пазы, в которые и укладывается обмотка. Пазы для повышения электрической прочности обмотки и предохранения ее от механических -повреждений изолированы листами электрокартона с лакотканью или миканита. Пакет активной стали укреплен в чугунной или стальной станине генератора.
Рекламные предложения на основе ваших интересов:
Ротор синхронного генератора конструктивно может быть выполнен явнополюсным и неявнополюсным.
Явнополюсный ротор (рис. 1, б) имеет выступающие или, как говорят, явновыраженные полюсы. Такие роторы применяют в тихоходных генераторах со скоростью вращения не более 1000 об/мин. Сердечники полюсов этих роторов набирают обычно из листов электротехнической стали толщиной 1-2 мм, которые прочно скрепляют в пакет стяжными шпильками. На валу ротора полюсы крепят болтами или при помощи Т-образного хвостовика полюса, укрепляемого в специальных пазах, профре-зерованных в стальном теле ротора.
Обмотку возбуждения наматывают изолированным медным проводом соответствующего сечения. В роторах синхронных генераторов, предназначенных для работы в электроустановках, где в качестве первичных двигателей применяются дизели, предусматривается так называемая успокоительная обмотка. Успокоительная или как еще ее называют демпферная обмотка служит для успокоения свободных колебаний, возникающих при внезапных изменениях режима работы синхронных генераторов (резкие сбросы нагрузки, падение напряжения, изменение тока возбуждения и др.), особенно в тех случаях, когда несколько генераторов работают параллельно на общую сеть.
Неявнополюсным называют ротор, имеющий вид цилиндра без выступающих полюсов. Такие роторы выполняют обычно двух- или четырехполюсными.
Явнополюсные роторы для быстроходных машин не применяют из-за сложности изготовления крепления полюсов, способных выдерживать большие центробежные усилия.
Неявнополюоный ротор (рис. 1, в) состоит из вала и стальной поковки с профрезерованными в ней пазами, в которые уложена обмотка возбуждения. В остальном неявнополюсный ротор конструктивно выполнен так же, как и явнополюсный.
Конструкция проводников роторной обмотки выбирается в зависимости от типа ротора: для обмоток явнополюсных роторов применяют прямоугольные или круглые изолированные провода, а также голые медные полосы, гнутые на ребро и изолированные полосками миканита; обмотки неявнополюсных роторов выполняют из изолированных витков плоской твердокатаной меди, укладываемых в изолированные пазы роторов.
Концы обмотки ротора (индуктора) выведены и присоединены к контактным кольцам на валу ротора. К индуктору подводится постоянный ток от какого-либо внешнего источника. В качестве источника тока возбуждения синхронных генераторов мощностью до 20 кет применяют полупроводниковые выпрямители, а для более мощных генераторов — специальные машины постоянного тока (возбудители), помещаемые обычно на общем валу с ротором генератора или механически соединяемые с генератором посредством полумуфт. Возбудитель представляет собой генератор постоянного тока, мощность которого, как правило, составляет 1-3% номинальной мощности питаемого им генератора. Номинальное напряжение возбудителей невелико и у синхронных генераторов средней мощности не превышает 150 в. Постоянный ток для возбуждения синхронных генераторов может быть получен с помощью ртутных, полупроводниковых или механических выпрямителей. Для возбуждения синхронных генераторов мощностью до 20 кет чаще всего применяют селеновые или германиевые выпрямители.
Ток возбуждения в проходит от источника до индуктора по следующему пути: источник постоянного тока — неподвижные щетки на контактных кольцах, контактные кольца ротора — обмотки полюсов индуктора. Этот путь показан схематически на рис. 1, а. Синхронный генератор обладает свойством обратимости, т.е. может работать и в качестве электродвигателя, если обмотку его статора присоединить к сети трехфазного переменного тока.
Синхронный генератор принцип работы и устройство
Схема включения синхронного генератора показана на рис. 1.
Синхронный генератор работает следующим образом. Ротор генератора приводится во вращение первичным двигателем с номинальной скоростью, которая поддерживается постоянной при помощи автоматического регулятора скорости первичного двигателя. Генератор возбуждают, подавая ток возбуждения/в в обмотку ротора.
Если к зажимам работающего синхронного генератора присоединить внешнюю нагрузку, то в обмотке статора появится ток, который создаст свое магнитное поле, называемое потоком обмотки статора. Этот поток делится на две части. Одна часть (поток рассеяния), замыкаясь вокруг проводников статора через его воздушный зазор и пакет, обусловливает возникновение дополнительного индуктивного сопротивления обмотки статора. Другая часть потока, замыкаясь через воздушный зазор и полюсы ротора, образует вращающееся магнитное поле статора, подобное вращающемуся полю статора асинхронного электродвигателя. Скорость вращения магнитного поля статора будет равна скорости вращения магнитного поля ротора, иначе говоря, эти поля будут вращаться с одинаковой (синхронной) скоростью.
Рекламные предложения на основе ваших интересов:
В синхронном генераторе, работающем под нагрузкой, магнитное поле статора, накладываюсь на основное магнитное поле ротора, создаваемое обмоткой возбуждения, ослабляет или усиливает его. Воздействие намагничивающей силы якоря на магнитное поле возбуждения ротора генератора называется реакцией якоря.
Реакция якоря может быть поперечной или продольной. При поперечной реакции поле статора размагничивает набегающий край полюсов и намагничивает сбегающий край полюсов. Продольная реакция может быть продольно-размагничивающей или продольно-намагничивающей. В первом случае магнитный поток якоря направлен навстречу потоку полюсов вдоль их оси, во втором случае согласно потоку полюсов также вдоль их оси.
Реакция якоря зависит от характера нагрузки и оказывает большое влияние на работу синхронного генератора. При чисто активной нагрузке реакция якоря будет поперечной, а при чисто индуктивной и чисто емкостной нагрузках — соответственно продольно-размагничивающей и продольно-намагничивающей. Обыч-нЪ генераторы работают на смешанную нагрузку, чаще всего на индуктивную и активную.
Регулирование тока в обмотке возбуждения (в обмотке индуктора) генератора осуществляют при помощи шунтового регулятора (реостата), включенного в цепь возбуждения возбудителя. Изменяя напряжение возбудителя, можно изменять силу тока в индукторе генератора. Сущность данного способа регулирования заключается в том, что изменение тока в обмотке возбуждения ротора вызывает изменение э. д. е., индуктируемой в обмотке статора. При этом с увеличением тока в обмотке возбуждения э. д. е., индуктируемая в обмотке статора, также увеличивается.
Необходимость регулирования тока возбуждения вызывается частыми изменениями характера и величины нагрузки.
Синхронный генератор
Рассматривая подобную технику, следует понимать, что на сегодняшнем рынке электроавтозапчастей встречается широкое разнообразие подобных устройств. Среди огромного количества различных вариантов следует отдельно выделить асинхронный и синхронный дизельный агрегат. В особенности большим спросом ныне пользуются синхронные устройства. Поэтому для того чтобы по правильному предназначению использовать эти устройства, необходимо ознакомиться с особенностями синхронного прибора и ознакомиться с принципом его действия.
Что представляет собой синхронный генератор
Каждый из нас знает, что техника способна обыкновенную механическую энергию преобразовывать в электрическую. Столкнувшись с ней лично, необходимо понимать, что представляет собой это устройство.
Синхронный образец представляет собой особый вид электрической машины, работающей на переменном токе. Особенность его состоит в том, что вращение магнитного поля, которое создается с помощью обмотки, осуществляется с той же частотой, что и вращение такого составляющего элемента, как ротор.
На сегодняшний день большим спросом пользуются именно синхронные агрегаты, так как именно они способны вырабатывать огромное количество электрической энергии, которая используется нами, как потребителями. Что же касается механизма, который приводит устройство в движение, то они делятся на:
- синхронные, работающие на так называемых двигателях внутреннего сгорания
- синхронные, приводимые в движение с помощью гидротурбин.
Несмотря на то, какой механизм используется для их движения, в любом случае механическая энергия преобразовывается в так называемую электрическую энергию.
Из каких составляющих элементов состоит синхронный генератор
В первую очередь необходимо ознакомиться с его основными составляющими элементами. К главным элементам синхронного устройства можно отнести:
- индуктор
- якорь
По сути, эти два элемента и отвечают за работу непосредственно самого агрегата. При этом индуктор размещается на роторе, а якорь располагается на статоре, который отделен от ротора небольшим воздушным зазором. Что же касается непосредственно самого принципа работы, то он может осуществлять собственное функционирование в нескольких режимах:
- режим генератора
- режим двигателя
Каждый из представленных режимов имеет свои неоспоримые преимущества и сферы применения. Поэтому, выбирая подобное оборудование, отдавайте выбор в сторону синхронного варианта, так как именно он на сегодняшний день выступает основой современной энергетики и обеспечивает множество устройств и приборов бесперебойным электрическим питанием.
УСТРОЙСТВО ГЕНЕРАТОРА
Бытовая генераторная установка состоит из силового агрегата — двигателя, и узла, который преобразует крутящий момент в электричество — генератора.
В бытовых электростанциях, как правило, используются двигатели внутреннего сгорания. Дизельные либо бензиновые. Я бы не стал выделять отдельным классом бытовые газовые электростанции, т.к. по своей сущности, их двигатель представляет собой не что иное как доработанный бензиновый (аналогично переделке в автомобильных двигателях).
Как известно генераторы бываю синхронными и асинхронными. Какие из них лучше или хуже, чем? В описании продаваемой продукции торгующих организаций интернета излагается следующее:
«Асинхронные дешевле, но, к сожалению, говорить о приемлемом качестве электричества в данном случае нельзя. К тому же при подключении такой нагрузки, как электродвигатель (холодильник, насос, электроинструмент) в момент запуска потребляет кратковременно 1,5-3 кратную мощность, поэтому нужно делать соответственный запас по мощности выбираемой генераторной установки. Асинхронный генератор не переносит пиковых перегрузок.
Синхронные генераторы отличаются более высоким качеством электричества, а также способны переносить 3-кратные мгновенные перегрузки. В профессиональных и стационарных электростанциях устанавливаются только синхронные генераторы.»
Или еще: «Синхронные генераторы — менее точны, но, тем не менее, они пригодны для аварийного электропитания офисов, холодильных установок, оборудования загородных домов, дач, строительных объектов. Такие электрогенераторы без проблем справляются с энергоснабжением электроинструментов и электродвигателей с реактивной нагрузкой до 65% от своего номинала.
Асинхронные генераторы обеспечивают поддержание напряжения в сети с высокой точностью, поэтому позволяют подключать к ним аппаратуру, чувствительную к перепадам напряжения (например, медицинское оборудование, другие электронные устройства). Подобные генераторы позволяют подключать к ним электроинструменты и электродвигатели с реактивной мощностью до 30% от номинала.»
Если Вы внимательно прочитали этот текст, то наверное обратили внимание, что информация указанная в нем строго противоречива. Вы можете сами в этом убедиться, набрав в поисковой системе Яндекс, запрос: » познаем электростанции » или » отличие генераторов «. В рамках данной статьи не хочется заниматься рекламой или наоборот, выбор должен оставаться за потребителем, поэтому:
Попробуем для начала разобраться, что такое вообще генератор.
Принцип действия любого генератора основан на явлении электромагнитной индукции. Преобразование механической энергии двигателя (вращательной) в энергию электрического тока поясняет картинка. Если в однородном магнитном поле В равномерно вращается рамка, то в ней возникает, переменная Э.Д.С., частота которой равна частоте вращения рамки. Будем ли мы вращать рамку в магнитном поле, или магнитное поле вокруг рамки, либо магнитное поле внутри рамки, результат будет один — Э.Д.С., изменяющаяся по гармоническому закону.
ОТЛИЧИЯ МЕЖДУ СИНХРОННЫМИ И АСИНХРОННЫМИ ГЕНЕРАТОРАМИ
Синхронный генератор — это синхронная машина, работающая в режиме генератора в которой частота вращения магнитного поля статора равна частоте вращения ротора. Ротор с магнитными полюсами создает вращающееся магнитное поле, которое пересекая обмотку статора, наводит в ней ЭДС.
В синхронном генераторе ротор выполнен виде постоянного магнита или электромагнита. Число полюсов ротора может быть два, четыре и т.д., но кратно двум. В бытовых электростанциях используется, как правило, ротор с двумя полюсами, чем и обусловлена частота вращения двигателя электростанции 3000 об/мин.
Ротор, при запуске электростанции, создает слабое магнитное поле, но с увеличением оборотов, увеличивается и ЭДС в обмотке возбуждения. Напряжение с этой обмотки через блок автоматической регулировки (AVR) поступает на ротор, контролируя выходное напряжение за счет изменения магнитного поля. Например, подключенная индуктивная нагрузка размагничивает генератор и снижает напряжение, а при подключении емкостной нагрузки происходит подмагничивание генератора и повышение напряжения. Это называется «реакцией якоря». Для обеспечения стабильности выходного напряжения необходимо изменять магнитное поле ротора путем регулирования тока в его обмотке, что и обеспечивается блоком AVR.
Преимуществом таких генераторов является высокая стабильность выходного напряжения, а недостатком — возможность перегрузки по току, так как при завышенной нагрузке, регулятор может чрезмерно повысить ток в обмотке ротора. Еще к недостаткам синхронного генератора можно отнести наличие щеточного узла, который рано или поздно придется обслуживать.
Благодаря такому способу регулировки, вне зависимости от изменения тока нагрузки и оборотов двигателя электростанции стабильность выходного напряжения генератора остается очень высокой, примерно ±1%.
Асинхронный генератор — асинхронная машина (двигатель) работающая в режиме торможения, ротор которой вращается с опережением, но в том же направлении что и магнитное поле статора.
В зависимости от типа обмотки, ротор может быть короткозамкнутым либо фазным. Вращающееся магнитное поле, созданное вспомогательной обмоткой статора, индуцирует на роторе магнитное поле, которое вращаясь вместе с ротором, наводит ЭДС в рабочей обмотке статора, так же как и в синхронном генераторе. Вращающееся магнитное поле остается всегда неизменным и не регулируемо, вследствие чего напряжение и частота на выходе генератора зависит от частоты оборотов ротора, а следовательно от стабильности работы двигателя электростанции.
Несмотря на простоту обслуживания, малую чувствительность к короткому замыканию и невысокую стоимость, асинхронные генераторы применяются достаточно редко, так как имеются ряд недостатков: асинхронный генератор всегда потребляет намагничивающий ток значительной силы, поэтому для его работы необходим источник реактивной мощности (конденсаторы), зависящий от активно-индуктивного характера нагрузки; ненадежность работы в экстремальных условиях; возбуждение асинхронного генератора зависит от случайных факторов и происходит, как правило, при скорости превышающей или равной синхронной; зависимость выходного напряжения и частоты тока от устойчивости работы двигателя и т.д.
Санкт-Петербург :: Контактный телефон: (812) 925-30-11, 927-10-07 :: Доставка по России!
информация, касающаяся комплектаций, технических характеристик, а также стоимости электростанций носит информационный характер и не является публичной офертой
Синхронный генератор принцип работы и устройство
В синхронных машинах магнитное поле токов якорной обмотки и ротор вращаются с одинаковой скоростью (синхронно). Синхронные машины обратимы, т. е. они могут работать как генераторы и как двигатели. Однако наибольшее распространение они получили как генераторы переменного тока, которые устанавливают на всех современных электростанциях.
Генератор переменного тока был изобретен выдающимся русским электротехником П. Н. Яблочковым. Этот генератор был применен для питания электрических свечей и по принципу работы ничем не отличался от современных генераторов, являясь первым многофазным генератором. На его статоре были уложены изолированные друг от друга несколько обмоток, каждая из которых имела свою цепь с группой свечей.
В 1888 г. другой выдающийся русский электротехник М. О. Доливо-Добровольский построил первый в мире трехфазный генератор мощностью около 3 кВА.
Синхронный генератор имеет две основные часик ротор и статор.
Ротор (подвижная, вращающаяся часть машины) образует систему вращающихся электромагнитов, питаемых постоянным током от внешнего источника.
Статор (неподвижная часть машины) ничем не отличается от статора асинхронной машины. В его обмотке действием вращающегося магнитного поля ротора наводится ЭДС, подаваемая на внешнюю цепь генератора (в режиме двигателя на обмотку статора подается напряжение сети). Такая конструкция генератора позволяет устранить скользящие контакты в цепи нагрузки генератора (обмотка статора соединяется с нагрузкой непосредственно) и надежно изолировать рабочую обмотку от корпуса машины, что весьма существенно для современных генераторов, изготовляемых на большие мощности при высоких напряжениях. Основной магнитный поток синхронного генератора, создаваемый вращающимся ротором, возбуждается от постороннего источника-возбудителя, представляющего собой обычный генератор постоянного тока (мощностью 0,5-10% от мощности генератора). Возбудитель устанавливается на общем валу с генератором либо соединяется с валом генератора муфтой или ременной передачей. Постоянный ток от возбудителя проходит через обмотку ротора через два кольца и неподвижные щетки, установленные на валу ротора.
По своей конструкции роторы различают явнополюсные (рис. 5-25, а) и неявнополюсные (рис. 5-25, б). Число пар полюсов ротора обусловлено скоростью его вращения. При частоте генерируемой ЭДС 50 Гц неявнополюсный ротор быстроходной машины—турбогенератора, вращающийся со скоростью
3000 об/мин, имеет одну пару полюсов, тогда как явнополюсный ротор тихоходного гидрогенератора (скорость вращения которого определяется высотой напора воды), вращающийся со скоростью от 50 до 750 об/мин, имеет число пар полюсов соответственно от 60 до 4.
Маломощные синхронные генераторы (до 100 кВА), как правило, имеют самовозбуждение: обмотка возбуждения питается выпрямленным током того же генератора (рис. 5-26). Цепь возбуждения образуют трансформаторы тока , включаемые в цепь нагрузки генератора, полупроводниковый выпрямитель ПВ, собираемый, например, по схеме трехфазного моста, и обмотка возбуждения генератора ОВ с регулировочным реостатом R.
Самовозбуждение генератора происходит следующим образом. В момент пуска генератора благодаря остаточной индукции в магнитной системе появляются слабые ЭДС и токи в рабочей обмотке генератора. Это приводит к появлению ЭДС во вторичных обмотках трансформаторов ТТ и небольшого тока в цепи возбуждения, усиливающего индукцию магнитного поля машины. ЭДС генератора возрастает до тех пор, пока магнитная система машины полностью не возбудится.
Такие генераторы (однофазные и трехфазные) используют в маломощных низковольтных передвижных электростанциях, применяемых, например, в сельском хозяйстве для электрострижки овец и дойки коров, а также для питания сельских передвижных киноустановок и т. д. В этих генераторах рабочая обмотка часто выполняется на роторе, а на внутренней поверхности статора устраивается полюсная система с явно выраженными полюсами. Подключение генератора к внешней нагрузке осуществляется через скользящие токосъемы (щетки с кольцами на оси ротора).
Виды электрических генераторов и принципы их работы
Электрическим генератором называется машина или установка, предназначенная для преобразования энергии неэлектрической — в электрическую: механической — в электрическую, химической — в электрическую, тепловой — в электрическую и т. д. Сегодня в основном, произнося слово «генератор», мы имеем ввиду преобразователь механической энергии — в электрическую.
Это может быть дизельный или бензиновый переносной генератор, генератор атомной электростанции, автомобильный генератор, самодельный генератор из асинхронного электродвигателя, или тихоходный генератор для маломощного ветряка. В конце статьи мы рассмотрим в качестве примера два наиболее распространенных генератора, но сначала поговорим о принципах их работы.
Так или иначе, с физической точки зрения принцип работы каждого из механических генераторов — один и тот же: явление электромагнитной индукции, когда при пересечении линиями магнитного поля проводника — в этом проводнике возникает ЭДС индукции. Источниками силы, приводящей к взаимному перемещению проводника и магнитного поля, могут быть различные процессы, однако в результате от генератора всегда нужно получить ЭДС и ток для питания нагрузки.
Принцип работы электрического генератора — Закон Фарадея
Принцип работы электрического генератора был открыт в далеком 1831 году английским физиком Майклом Фарадеем. Позже этот принцип назвали законом Фарадея. Он заключается в том, что при пересечении проводником перпендикулярно магнитного поля, на концах этого проводника возникает разность потенциалов.
Первый генератор был построен самим Фарадеем согласно открытому им принципу, это был «диск Фарадея» — униполярный генератор, в котором медный диск вращался между полюсами подковообразного магнита. Устройство давало значительный ток при незначительном напряжении.
Позже было установлено, что отдельные изолированные проводники в генераторах проявляют себя гораздо эффективнее с практической точки зрения, чем сплошной проводящий диск. И в современных генераторах применяются теперь именно проволочные обмотки статора (в простейшем демонстрационном случае — виток из проволоки).
Генератор переменного тока
В подавляющем своем большинстве современные генераторы — это синхронные генераторы переменного тока. У них на статоре располагается якорная обмотка, от которой и отводится генерируемая электрическая энергия. На роторе располагается обмотка возбуждения, на которую через пару контактных колец подается постоянный ток, чтобы получить вращающееся магнитное поле от вращающегося ротора.
За счет явления электромагнитной индукции, при вращении ротора от внешнего привода (например от ДВС), его магнитный поток пересекает поочередно каждую из фаз обмотки статора, и таким образом наводит в них ЭДС.
Чаще всего фаз три, они смещены физически на якоре друг относительно друга на 120 градусов, так получается трехфазный синусоидальный ток. Фазы можно соединить по схеме «звезда» либо «треугольник», чтобы получить стандартное сетевое напряжение.
Частота синусоидальной ЭДС f пропорциональна частоте вращения ротора: f = np/60, где — p — число пар магнитных плюсов ротора, n – количество оборотов ротора в минуту. Обычно максимальная скорость вращения ротора — 3000 оборотов в минуту. Если подключить к обмоткам статора такого синхронного генератора трехфазный выпрямитель, то получится генератор постоянного тока (так работают, кстати, все автомобильные генераторы).
Упрощенная схема трехфазного генератора переменного тока:
Трехмашинный синхронный генератор
Конечно, у классического синхронного генератора есть один серьезный минус — на роторе располагаются контактные кольца и щетки, прилегающие к ним. Щетки искрят и изнашиваются из-за трения и электрической эрозии. Во взрывоопасной среде это не допустимо. Поэтому в авиации и в дизель-генераторах более распространены бесконтактные синхронные генераторы, в частности — трехмашинные.
У трехмашинных устройств в одном корпусе установлены три машины: предвозбудитель, возбудитель и генератор — на общем валу. Предвозбудитель — это синхронный генератор, он возбуждается от постоянных магнитов на валу, генерируемое им напряжение подается на обмотку статора возбудителя.
Статор возбудителя действует на обмотку на роторе, соединенную с закрепленным на ней трехфазным выпрямителем, от которого и питается основная обмотка возбуждения генератора. Генератор генерирует в своем статоре ток.
Газовые, дизельные и бензиновые переносные генераторы
Сегодня очень распространены в домашних хозяйствах дизельные, газовые и бензиновые генераторы, которые в качестве приводных двигателей используют ДВС — двигатель внутреннего сгорания, передающий механическое вращение на ротор генератора.
У генераторов на жидком топливе имеются топливные баки, газовым генераторам — необходимо подавать топливо через трубопровод, чтобы затем газ был подан в карбюратор, где превратится в составную часть топливной смеси.
Во всех случаях топливная смесь сжигается в поршневой системе, приводя во вращение коленвал. Это похоже на работу автомобильного двигателя. Коленвал вращает ротор бесконтактного синхронного генератора (альтернатора).
Лучшие инверторные генераторы домашних электростанций имеют встроенный аккумулятор для компенсации перепадов и систему двойного преобразования, у таких устройств переменное напряжение получается более стабилизированным.
Автомобильные генераторы
Еще один пример генератора переменного тока — самый распространенный в мире вид генератора — автомобильный генератор. Данный генератор традиционно содержит обмотку возбуждения с контактными кольцами на роторе и трехфазную обмотку статора с выпрямителем.
Встроенный электронный регулятор удерживает напряжение в допустимых для автомобильного аккумулятора пределах. Автомобильный генератор — высокооборотный генератор, его обороты могут достигать 9000 в минуту.
Хотя изначально ток получается переменным (полюсные наконечники ротора поочередно и в разной полярности пересекают своими магнитными потоками три фазы обмотки статора), затем он выпрямляется диодами и превращается в постоянный, пригодный для зарядки аккумулятора.
Необычные конструкции электрических генераторов:
Устройство и принцип работы синхронного генератора
Синхронным генератором (СГ) называют устройство, выполняющее функцию трансформации механической энергии в электрическую. Принцип работы и устройство синхронного генератора достаточно просты и надежны. Такое энергетическое оборудование востребовано для использования в мобильных авторемонтных мастерских, для ремонта и обслуживания станков-качалок, спецмашин нефтегазовой отрасли, на ГЭС, ТЭС, АЭС, в транспортных системах.
Основные конструктивные элементы
В конструкцию статора входит корпус, внутри которого расположен сердечник, или пакет, собираемый из листов электротехнической стали особой формы. На качество электрического тока влияют такие факторы как: цельность листов в пакете (бывают цельными или составными), качество и материал обмотки. Для обмотки применяется медный эмаль-провод, а в дешевых устройствах возможна замена меди на алюминий.
Роторы изготавливаются явнополюсными или неявнополюсными.
- Явнополюсные роторы предназначены для синхронных генераторов, работающих с двигателями внутреннего сгорания с низкой частотой вращения — 1500 и 3000 об/мин.
- Неявнополюсные роторы востребованы в высокоскоростных (более 3000 об/мин) механизмах переменного электрического тока высокой мощности. Обычно их размещают на одном валу с паровыми турбинами. Такие СГ называют «турбогенераторы».
Определение скорости вращения
Понятие «синхронный» означает, что число оборотов находится в прямой математической зависимости от частоты тока. Эта зависимость определяется по формуле n = 60*f/p, где:
- n — скорость вращения, об/мин;
- f — частота, в бытовой электрической сети она равна 50 Гц;
- p — количество пар полюсов.
Принцип работы СГ
Принцип действия машины в режиме синхронного генератора:
- При пропускании через обмотку возбуждения постоянного тока образуется стабильное во времени магнитное поле с чередующейся полярностью.
- При вращении магнитного поля относительно проводников обмотки якоря возбуждаются переменные ЭДС.
- Переменные ЭДС суммируются, образуя ЭДС фаз. Трехфазная система образуется тремя одинаковыми обмотками, размещаемыми на якоре под электрическим углом друг к другу, равным 120°.
В случаях, если централизованное электроснабжение имеет недостаточную мощность или отсутствует, как, например, на удаленных стройплощадках, нефтегазодобывающих объектах, морских и воздушных судах, СГ в составе с двигателем внутреннего сгорания функционируют в автономном режиме. При необходимости создания мощных источников питания синхронные двигатели включают на параллельную работу. Такой способ включения позволяет более полно использовать мощность каждой машины и при необходимости выводить отдельные СГ в ремонт без прекращения эффективного электроснабжения потребителей.
Второй режим работы синхронной машины — выполнение функций электродвигателя. Обычно СГ востребован в качестве двигателя в высокомощных установках более 50 кВт. Для работы в режиме электродвигателя обмотку статора подключают к электросети, а обмотку ротора — к источнику постоянного тока. Вращающий момент возникает при взаимодействии вращающегося магнитного поля СГ с постоянным током обмотки возбуждения.