Dilmet-pro.ru

Стройка и Ремонт
92 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Кварцевый генератор принцип работы

Что такое кварцевый резонатор?

Как мы уже должны знать из курса электротехники, главный параметр любого колебательного контура добротность. Кварцевые резонаторы обладают на порядок улучшенной добротностью. Кроме того резонаторы обладают отличной температурной стабильностью. Именно благодаря этим двум параметрам кварцевые резонаторы нашли в электронике такое широкое применение.

Устройство и принцип работы резонатора

Принцип работы резонатора базируется на пьезоэлектрическом эффекте. В устройстве любого кварцевого резонатора лежит кварцевая пластина. Она изготавливается из разновидностей кремнезема SiO2. Для изготовления резонаторов подходит только низкотемпературный кварц, который обладает отличными пьезоэлектрическими свойствами. В природе он бывает в виде кристаллов и бесформенной гальки.

Химически кварц очень устойчив во внешней среде и не растворяется ни в какой кислоте, за исключением лишь плавиковой. Кварц на шкале твердости занимает седьмое место из десяти. Для изготовления кварцевой пластины из из кристалл кварца под определенным углом вырезается пластинка. Углом среза, задаются электромеханические свойства кварцевой пластины, температурная стабильность, количество паразитных резонансов, резонансная частоту.

Затем на обе стороны кварцевой пластины наносят металлизированный слой из серебра, никеля или платины и с помощью проволочных контактов закрепляют в кварцедержателе. Далее всю эту составную конструкцию размещают в герметичный корпус.


Кварцевый резонатор и его параметры

Кварцевые резонаторы считаются пассивными электронными двухполюсниками, имеющими ярко выраженные резонансные свойства. Основной частью резонатора является пьезоэлемент, — кристаллическая пластина из пьезоэлектрика, на поверхность которой нанесены электроды. В пьезорезонаторах применяются два эффекта: резонансные свойства упругих колебаний в кристалле и пьезоэлектричество.

Кварцевый резонатор это электромеханическая колебательная система, обладающая своей резонансной частотой. Если к резонатору приложить переменное напряжение, совпадающее, то случиться резонанс частот и амплитуда колебаний резко увеличиться.

В момент резонанса электрическое сопротивление кварца резко снижается. В результате имеем полнофункциональный эквивалент последовательной колебательной системы. Так как потери энергии в кварце очень малы, то по сути он представляет собой стандартный колебательный контур с огромной добротностью. Механически вибрирующий кристалл кварцевого резонатора может быть представлен эквивалентной электрической схемой, состоящей из низкого сопротивления R , большой индуктивности L и малой емкости C. Рассмотрим эквивалентную электрическую схему типового кварцевого резонатора

С – это статическая емкость возникающая между металлическими пластинами и держателем. Последовательно соединенные индуктивность и конденсатор С1, а также активное сопротивление Rакт. описывают основные электромеханические свойства пластинки. То-есть если не учитывать емкость монтажа и С, то увидим самый обычный последовательный колебательный контур.

При помещении кварцевого резонатора в реальную электронную схему кристалл действует как настроенная схема. Однако он обладает достаточно высокой добротностью. Используются в основном в роли резонансного компонента в частотных фильтрах, и в генераторах. В обоих случаях очень высокая добротность кварца позволяет получить неплохую производительность.

При монтаже резонатора на печатную необходимо следить затем, чтоб не перегреть его. Так как конструкция резонатора обычно довольно тонкая и температурный перегрев может быть причиной механической деформацией кварцедержателей и пластинок-электродов, что скажется на качестве работы схемы.

На принципиальных схемах обозначение кварцевого резонатора похоже на конденсатора, только между пластинами имеется прямоугольник, который обозначает пластину кварца. Рядом с графическим изображением ставиться латинская буква Z или ZQ.

Несмотря на свою высокую производительность, кварцевые резонаторы дешевы в производстве, и нашли широкое применение в микропроцессорной и традиционной радиочастотной технике. Как следует из их названия, эти радиокомпоненты изготовлены из кварца — естественной формы кремния, хотя большинство из них сделаны искусственно. Сегодня эти радио элементы доступны во многих форм факторах, от небольших устройств с поверхностным креплением для монтажа до более крупных с отверстиями для гнез.

Это явление открыл Жак и Пьер Кюри в 1880 г. Внешние механические силы, воздействуя в некоторых направлениях на кварц, вызывают в нем не только деформации и механические напряжения(как в любом твердом теле), но и электрическую поляризацию и, поэтому, генерацию на поверхностях кристалла связанных электрических зарядов противоположных знаков. При смене направления механических сил на противоположное изменяется и направление поляризации и знаки. Это явление в курсе электротехники называют прямым пьезоэффектом.

Чтобы проверить работоспособность кварцевого резонатора, нужно собрать одну из предложенных схем для проверки. Самый простой пробник для проверки состоит из головки микроамперметра и транзистор VT1 используется в роли генератора и нескольких других радиокомпонентов

Кварцевый резонатор — структура, принцип работы, как проверить

Современная цифровая техника требует высокой точности, поэтому совсем неудивительно, что практически любое цифровое устройство, какое бы не попалось сегодня на глаза обывателю, содержит внутри кварцевый резонатор.

Кварцевые резонаторы на различные частоты необходимы в качестве надежных и стабильных источников гармонических колебаний, чтобы цифровой микроконтроллер мог бы опереться на эталонную частоту, и оперировать с ней в дальнейшем, в процессе работы цифрового устройства. Таким образом, кварцевый резонатор — это надежная замена колебательному LC-контуру.

Если рассмотреть простой колебательный контур, состоящий из конденсатора и катушки индуктивности, то быстро выяснится, что добротность такого контура в схеме не превысит 300, к тому же емкость конденсатора будет плавать в зависимости от температуры окружающей среды, то же самое произойдет и с индуктивностью.

Не даром есть у конденсаторов и катушек такие параметры как ТКЕ — температурный коэффициент емкости и ТКИ — температурный коэффициент индуктивности, показывающие, насколько изменяются главные параметры этих компонентов с изменением их температуры.

В отличие от колебательных контуров, резонаторы на базе кварца обладают недостижимой для колебательных контуров добротностью, которая измеряется значениями от 10000 до 10000000, причем о температурной стабильности кварцевых резонаторов речи не идет, ведь частота остается постоянной при любом значении температуры, как правило из диапазона от -40°C до +70°C.

Так, благодаря высоким показателям температурной стабильности и добротности, кварцевые резонаторы применяются всюду в радиотехнике и цифровой электронике.

Для задания микроконтроллеру или процессору тактовой частоты, ему всегда необходим генератор тактовой частоты, на который он мог бы надежно опереться, и генератор этот всегда нужен высокочастотный и при том высокоточный. Здесь то и приходит на помощь кварцевый резонатор. Конечно, в некоторых применениях можно обойтись пьезокерамическими резонаторами с добротностью 1000, и таких резонаторов достаточно для электронных игрушек и бытовых радиоприемников, но для более точных устройств необходим кварц.

В основе работы кварцевого резонатора — пьезоэлектрический эффект, возникающий на кварцевой пластинке. Кварц представляет собой полиморфную модификацию диоксида кремния SiO2, и встречается в природе в виде кристаллов и гальки. В свободном виде в земной коре кварца около 12%, кроме того в виде смесей в составе других минералов также содержится кварц, и в общем в земной коре более 60% кварца (массовая доля).

Для создания резонаторов подходит низкотемпературный кварц, обладающий ярко выраженными пьезоэлектрическими свойствами. Химически кварц весьма устойчив, и растворить его можно лишь в гидрофторидной кислоте. По твердости кварц превосходит опал, но до алмаза не дотягивает.

При изготовлении кварцевой пластинки, от кристалла кварца под строго заданным углом вырезают кусочек. В зависимости от угла среза полученная кварцевая пластинка будет отличаться по своим электромеханическим свойствам.

От типа среза зависит многое: частота, температурная стабильность, устойчивость резонанса и отсутствие либо наличие паразитных резонансных частот. На пластинку затем наносят с обеих сторон по слою металла, коим может быть никель, платина, серебро или золото, после чего жесткими проволочками крепят пластинку в основание корпуса кварцевого резонатора. Последний шаг — корпус герметично собирают.

Так получается колебательная система, обладающая собственной резонансной частотой, и кварцевый резонатор, полученный таким образом, обладает собственной резонансной частотой, определяемой электромеханическими параметрами.

Теперь если приложить к металлическим электродам пластики переменное напряжение данной резонансной частоты, то проявится явление резонанса, и амплитуда гармонических колебаний пластинки весьма значительно возрастет. При этом сопротивление резонатора сильно понизится, то есть процесс аналогичен происходящему в последовательном колебательном контуре. В силу высокой добротности такого «колебательного контура», энергетические потери при его возбуждении на резонансной частоте пренебрежимо малы.

На эквивалентной схеме: C2 – статическая электроемкость пластинок с держателями, L – индуктивность, С1 — емкость, R – сопротивление, отражающие электромеханические свойства установленной пластинки кварца. Если убрать монтажные элементы, останется последовательный LC-контур.

В процессе монтажа на печатную плату, кварцевый резонатор нельзя перегревать, ведь конструкция его довольно хрупка, и перегрев может привести к деформации электродов и держателя, что непременно отразится на работе резонатора в готовом устройстве. Если же разогреть кварц до 5730°C, он вовсе утратит свои пьезоэлектрические свойства, но, к счастью, нагреть элемент паяльником до такой температуры невозможно.

Обозначение кварцевого резонатора на схеме похоже на обозначение конденсатора с прямоугольником между пластинами (кварцевая пластинка), и с надписью «ZQ» или «Z».

Часто причиной повреждения кварцевого резонатора является падение или сильный удар устройства, в котором он установлен, и тогда необходимо заменить резонатор на новый с той же резонансной частотой. Такие повреждения свойственны малогабаритным приборам, которые легко уронить. Однако, по статистике, подобные повреждения кварцевых резонаторов встречаются крайне редко, и чаще неисправность прибора оказывается вызвана иной причиной.

Читать еще:  Источники тока с заземленной нагрузкой

Чтобы проверить кварцевый резонатор на исправность, можно собрать небольшой пробник, который поможет не только убедиться в работоспособности резонатора, но и увидеть его резонансную частоту. Схема пробника представляет собой типичную схему кварцевого генератора на одном транзисторе.

Включив резонатор между базой и минусом (можно через защитный конденсатор на случай короткого замыкания в резонаторе), остается измерить частотомером резонансную частоту. Эта схема подойдет и для предварительной настройки колебательных контуров.

Когда схема включена, исправный резонатор станет способствовать генерации колебаний, и на эмиттере транзистора можно будет наблюдать переменное напряжение, частота которого будет соответствовать основной резонансной частоте тестируемого кварцевого резонатора.

Подключив к выходу пробника частотомер, пользователь сможет наблюдать эту резонансную частоту. Если частота стабильна, если небольшой нагрев резонатора поднесенным паяльником не приводит к сильному уплыванию частоты, то резонатор исправен. Если же генерации не будет, или частота будет плавать или окажется совсем другой, чем должна быть для тестируемого компонента, то резонатор неисправен, и его следует заменить.

Данный пробник удобен и для предварительной настройки колебательных контуров, в этом случае конденсатор C1 обязателен, хотя при проверке резонаторов его можно из схемы исключить. Контур просто подключается вместо резонатора, и схема начинает генерировать колебания аналогичным образом.

Пробник собранный по приведенной схеме замечательно работает на частотах от 15 до 20 МГц. Для иных диапазонов вы всегда можете поискать схемы в интернете, благо их там много, как на дискретных компонентах, так и на микросхеме.

Кварцевые резонаторы. Виды и применение. Устройство и работа

Современная цифровая аппаратура нуждается в высокой точности, поэтому часто в цифровых устройствах содержится кварцевый резонатор, который является стабильным и надежным генератором гармонических колебаний. Цифровые микроконтроллеры работают на основе этой постоянной частоты, и используют ее для работы цифрового прибора. Кварцевые резонаторы являются надежной заменой контура колебаний, собранного на конденсаторе и катушке индуктивности.

Добротность контура колебаний на основе катушки и конденсатора не превышает 300. Она является характеристикой контура колебаний, определяющей величину полосы резонанса. Добротность показывает, во сколько раз энергия колебательной системы превышает потери энергии в течение одного периода колебаний. Чем больше добротность, тем меньше теряется энергии за один период, и медленнее затухают колебания. Емкость конденсатора в обычном контуре колеблется в зависимости от температуры среды. Величина индуктивности катушки также зависит от многих факторов. Существуют даже соответствующие коэффициенты, определяющие зависимость параметров этих элементов от температуры.

Кварцевые резонаторы, в отличие от вышеописанных контуров колебаний, обладают очень большой добротностью, достигающей значения в несколько миллионов. При этом температура в пределах -40 +70 градусов никак не влияет на этот параметр. Высокая стабильность работы кварцевых резонаторов при любой температуре послужила их широкому применению в цифровой электронике и радиотехнике.

Разновидности

По типу корпуса:
  • Для объемной установки (цилиндрические и стандартные).
  • Для поверхностного монтажа.
По материалу корпуса:
  • Металлические.
  • Стеклянные.
  • Пластиковые.
По форме корпуса:
  • Круглые.
  • Прямоугольные.
  • Цилиндрические.
  • Плоские.
По количеству резонансных систем:
  • Одинарные.
  • Двойные.
По защите корпуса:
  • Герметичные.
  • Негерметизированные.
  • Вакуумные.
По назначению:
  • Фильтровые.
  • Генераторные.

Важным свойством кварцевых резонаторов для успешной работы является их активность. Но она не определяется только собственными свойствами. Вся электрическая схема влияет на его активность.

В резонаторах, используемых в фильтрах, применяются такие же виды колебаний, как и в генераторных резонаторах. В фильтрах используются 2-х и 4-х электродные вакуумные резонаторы. Для многозвенных фильтров чаще всего применяются 4-х электродные, так как они более экономичные.

Принцип действия и устройство

Кварцевые резонаторы работают на основе пьезоэлектрического эффекта, образующегося на кварцевой пластинке. Кварц – это природный кристалл. Он представляет собой модификацию соединения кремния с кислородом, и имеет химическую формулу Si O2. Массовая доля кварца в земной коре составляет около 60%, в свободном виде 12%. В других минералах также может содержаться кварц.

Для производства кварцевых резонаторов используют низкотемпературный кварц. Он обладает выраженным пьезоэлектрическим эффектом. Химическая устойчивость кварца очень высока, растворить кварц способна только гидрофторидная кислота. По твердости кварц стоит на втором месте после алмаза. Кварцевую пластинку для резонатора изготавливают путем вырезания из кварца кусочка под заданным определенным углом. В зависимости от этого угла среза кварцевая пластинка отличается разными электромеханическими параметрами.

От вида среза зависит наличие или отсутствие паразитных частот, стабильность работы при любых температурах, частота колебаний. На обе стороны кварцевой пластинки наносят слой одного из дорогостоящих металлов: серебра, платины, никеля или даже золота. После этого пластинку фиксируют прочными проволочками в корпусе резонатора. Затем производят герметичную сборку корпуса.

В результате образуется колебательный контур, обладающий собственной частотой резонанса, определяющей работу всего резонатора. Если к электродам пластинки приложить переменное напряжение с частотой резонанса, то возникнет резонансный эффект, а амплитуда колебаний пластинки значительно повысится. При этом резонатор уменьшит свое сопротивление на значительную величину. Этот процесс подобен тому процессу, который происходит в контуре колебаний последовательного вида (на основе катушки и конденсатора). Потери энергии при возбуждении кварцевого резонатора на частоте резонанса очень малы, так как добротность кварцевого контура колебаний очень высока.

Эта эквивалентная схема состоит из:
  • R – Сопротивление.
  • С1 – Емкость.
  • L – Индуктивность.
  • С2 – Статическая электрическая емкость пластинок вместе с держателями.

Эти элементы определяют электромеханические параметры кварцевой пластинки. Если удалить монтажные элементы, получается последовательный контур . При установке на монтажную плату, кварцевый резонатор не переносит чрезмерного нагрева, так как его конструкция очень хрупкая. Сильное нагревание может деформировать держатель и электроды, что отражается на функционировании готового кварцевого резонатора. Кварц полностью теряет свои свойства пьезоэлектрика при нагревании до температуры 5370 градусов. Однако паяльник не способен так сильно разогреваться.

На электрических схемах кварцевый резонатор обозначается по аналогии с конденсатором, но между пластин изображен прямоугольник, символизирующий кварцевую пластинку. На схеме резонатор обозначен «QX».

Обычно причиной неисправностью кварцевого резонатора становится сильный удар или падение устройства, в котором он находится. В этом случае резонатор подлежит замене на новый, с такими же параметрами. Такие неисправности возникают в маленьких приборах, которые проще уронить, или повредить. Но такие повреждения резонаторов встречаются не часто, и обычно неисправность устройства кроется совсем в другом.

Как проверить кварцевые резонаторы

Для проверки резонатора на его работоспособность, собирают специальный простой тестер, помогающий проверить кроме работы резонатора, еще и его частоту резонанса. Схема такого устройства похожа на кварцевый генератор, собранный на транзисторе.

Подключив резонатор между отрицательным полюсом и базой транзистора через защитный конденсатор, с помощью частотомера измеряют частоту резонанса. Такая схема подходит для настройки контуров колебаний. При включенной схеме исправный резонатор создает колебания. В результате на эмиттере транзистора возникает переменное напряжение с частотой резонанса тестируемого резонатора.

Если к выходу тестера подключить частотомер, то можно измерить частоту резонанса. При стабильной частоте и небольшом нагревании корпуса резонатора паяльником частота не должна значительно изменяться. Если частотомер не обнаруживает возникновение частоты, либо она сильно изменяется или имеет большие отличия от номинала, то резонатор негоден и требует замены.

При использовании такого тестера для настройки контуров, емкость С1 обязательна. Но при проверке исправности резонаторов ее присутствие в схеме не требуется. При этом колебательный контур просто подсоединяют на место кварцевого резонатора и тестер начинает создавать колебания таким же образом.

Тестер, выполненный по рассмотренной схеме, хорошо зарекомендовал себя на частоте 15-20 мегагерц. Для других интервалов можно найти другие схемы, собранные на микросхемах и других компонентах.

Сфера применения
Благодаря стабильности параметров кварцевых резонаторов, они нашли широкое использование в различных областях:
  • Многие измерительные устройства работают на основе таких резонаторов, при этом точность измерений очень высока.
  • Пьезокварцевая пластина применяется в качестве резонатора в морском эхолоте для выявления объектов, расположенных в воде, исследования дна моря, определения нахождения отмелей и рифов. Это дает возможность изучения жизни в океане в глубоководных районах, а также создания точных карт морского дна.
  • Кварцевые резонаторы нашли широкую популярность в кварцевых часах, так как частота колебаний кварцевой пластины практически не зависит от температуры, и имеет малое относительное изменение частоты.

Кварцевые резонаторы расширяют свою сферу использования, потребность в них постоянно увеличивается, так как они обладают повышенными метрологическими параметрами, эффективностью работы.

Кварцевый генератор принцип работы

Частота

Частота собственных колебаний кварцевого генератора может находиться в диапазоне от нескольких кГц до сотен МГц. Она определяется физическими размерами резонатора, упругостью и пьезоэлектрической постоянной кварца, а также тем, как вырезан резонатор из кристалла. Так как кварцевый резонатор является законченным электронным компонентом, его частоту можно изменять внешними элементами и схемой включения в очень узком диапазоне выбором резонансной частоты (параллельный или последовательный) или понизить параллельно включённым конденсатором. Существуют, однако, кустарные методики подстройки резонатора. Это целесообразно в случаях, когда желательно иметь несколько резонаторов с очень близкими параметрами. Для уменьшения частоты на кристалл кратковременно воздействуют парами йода (это увеличивает массу серебряных обкладок), для увеличения частоты обкладки резонатора шлифуют.

Читать еще:  Схема подключения газового генератора

В 1997 году компания Epson Toyocom выпустила в свет серию генераторов SG8002, в конструктиве которых присутствуют блок подстроечных конденсаторов и два делителя частоты. Это позволяет получить практически любую частоту в диапазоне от 1 до 125 МГц. Однако, данное достоинство неизбежно влечёт за собой недостаток — повышенный джиттер (фазовый шум). Цитата: Генератор с внутренними цепями фазовой автоподстройки частоты необходимо с предельной осторожностью применять в схемах, содержащих внешние цепи ФАПЧ. [1]

Стабильность частоты

Колебания кварцевого генератора характеризуются высокой стабильностью частоты (10 −5 ÷ 10 −12 ), что обусловлено высокой добротностью кварцевого резонатора (10 4 ÷ 10 5 ).

Уровень фазовых шумов

У лучших генераторов спектральная плотность мощности фазовых шумов может быть менее −100 дБн/Гц на отстройке 1 Гц и менее −150 дБн/Гц на отстройке 1 кГц при выходной частоте 10 МГц.

Тип выходного сигнала

Генераторы могут изготавливаться как в модификации с синусоидальным выходным сигналом, так и с сигналом прямоугольной формы, совместимым по логическим уровням с одним из стандартов (TTL, CMOS, LVCMOS, LVDS и т. д.).

Наличие и тип термостабилизации

  • термокомпенсированные (TCXO)
  • термостатированные (OCXO, DOCXO)

Возможность перестройки частоты

  • фиксированной частоты
  • частота управляется напряжением (VCXO)
  • частота управляется цифровым кодом (NCXO)

Принцип работы

Внешнее напряжение на кварцевой пластинке вызывает её деформацию. А она, в свою очередь, приводит к появлению зарядов на поверхности кварца (пьезоэлектрический эффект). В результате этого механические колебания кварцевой пластины сопровождаются синхронными с ними колебаниями электрического заряда на её поверхности и наоборот.

Для обеспечения связи резонатора с остальными элементами схемы непосредственно на кварц наносятся электроды, либо кварцевая пластинка помещается между обкладками конденсатора.

Для получения высокой добротности и стабильности резонатор помещают в вакуум и поддерживают постоянной его температуру.

Использование

Кварцевые генераторы используют для измерения времени (кварцевые часы), в качестве стандартов частоты. Кварцевые генераторы широко применяются в цифровой технике в качестве тактовых генераторов.

См. также

  • Кварц
  • Кварцевый резонатор
  • Генератор электронный
  • Генератор Пирса
  • Генератор тактовых импульсов

Примечания

  1. Однократно программируемые кварцевые генераторы Epson

Литература

Wikimedia Foundation . 2010 .

  • Кравченко, Валерий Трофимович
  • Клингоны

Смотреть что такое «Кварцевый генератор» в других словарях:

КВАРЦЕВЫЙ ГЕНЕРАТОР — автогенератор эл. магн. колебаний с колебат. системой, в состав к рой входит кварцевый резонатор. Предназначен для получения колебаний с высокой стабильностью частоты. Принцип построения электрич. схемы К. г. и его действия такие же, как и у… … Физическая энциклопедия

кварцевый генератор — Генератор переменного напряжения, стабилизирующим элементом частоты которого является кварцевый резонатор или пьезоэлемент. [ГОСТ 22866 77] Тематики кварцевые генераторы EN crystal oscillator … Справочник технического переводчика

Кварцевый генератор — маломощный генератор электрических колебаний высокой частоты, в котором роль резонансного контура играет кварцевый резонатор пластинка, кольцо или брусок, вырезанные определённым образом из кристалла кварца. При деформации кварцевой… … Большая советская энциклопедия

кварцевый генератор — маломощный генератор электрических колебаний высокой частоты, в котором колебательной системой служит кварцевый пьезоэлектрический резонатор или пьезоэлемент. Это пластинка, кольцо или брусок, вырезанные из кристалла кварца. При деформации… … Энциклопедия техники

кварцевый генератор — kvarcinis generatorius statusas T sritis automatika atitikmenys: angl. crystal oscillator; crystal controlled oscillator; quartz oscillator vok. Quarzgenerator, m; Quarzoszillator, m rus. кварцевый генератор, m pranc. oscillateur à cristal, m;… … Automatikos terminų žodynas

кварцевый генератор — kvarcinis generatorius statusas T sritis Standartizacija ir metrologija apibrėžtis Generatorius, kuriantis elektrinius virpesius, kurių dažnis stabilizuojamas kvarciniu rezonatoriumi. atitikmenys: angl. quartz generator; quartz oscillator vok.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

кварцевый генератор — kvarcinis generatorius statusas T sritis fizika atitikmenys: angl. crystal oscillator; quartz oscillator vok. Quarzoszillator, m rus. кварцевый генератор, m pranc. oscillateur à cristal, m; oscillateur à quartz, m … Fizikos terminų žodynas

кварцевый генератор, управляемый напряжением — кварцевый ГУН Высокостабильный подстраиваемый генератор, в котором в качестве частотозадающего элемента использован кварцевый резонатор. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь справочник. Под редакцией Ю.М … Справочник технического переводчика

кварцевый генератор синхронизации — kvarcinis sinchronizavimo generatorius statusas T sritis radioelektronika atitikmenys: angl. crystal timing oscillator vok. kristallgesteuerter Synchronisationsoszillator, m rus. кварцевый генератор синхронизации, m pranc. oscillateur de… … Radioelektronikos terminų žodynas

дискретный кварцевый генератор — Кварцевый генератор, кварцевый резонатор и другие элементы которого представляют собой дискретные элементы, имеющие гальванические связи. [ГОСТ 22866 77] Тематики кварцевые генераторы EN crystal oscillator with discrete elements … Справочник технического переводчика

Кварцевый резонатор

Принцип работы и свойства кварцевого резонатора

В современной электронике, особенно в цифровой сложно не найти электронный компонент под названием кварцевый резонатор. По своей сути, кварцевый резонатор является аналогом колебательного контура на основе ёмкости и индуктивности. Правда, кварцевый резонатор превосходит LC-контур по очень важным параметрам.

Как известно, колебательный контур характеризуется добротностью . Резонаторы на основе кварца обладают очень высокой добротностью, которая недостижима при использовании обычного колебательного LC-контура. Если добротность обычных контуров лежит в пределах 100 – 300, то для кварцевых резонаторов величина добротности достигает 10 5 – 10 7 .

Ёмкость конденсатора довольно сильно зависит от температуры окружающей среды. У конденсаторов даже есть параметр, который называется ТКЕ (температурный коэффициент ёмкости). Он показывает насколько измениться ёмкость конденсатора при изменении температуры.

Естественно, при применении конденсатора в составе LC-контура, частота его колебаний будет очень сильно зависеть от внешней температуры среды. То же касается и индуктивности, у которой также есть своя температурная характеристика — ТКИ.

Понятно, что для использования в цифровой технике (в том числе и в технике связи) требуется более стабильный и надёжный источник гармонических колебаний.

Резонаторы на основе кварца обладают очень высокой температурной стабильностью . Именно благодаря высокой добротности и температурной стабильности кварцевые резонаторы применяются в радиотехнике очень активно.

Любой процессор или микроконтроллер работает на определённой тактовой частоте. Понятно, что для задания тактовой частоты необходим генератор. Такой генератор в качестве источника высокоточных гармонических колебаний, как правило, использует кварцевый резонатор. В тех схемах, где высокая добротность не требуется, могут применяться резонаторы на основе керамики – керамические резонаторы. Добротность резонаторов на основе пьезокерамики составляет не более 10 3 . Их можно встретить в пультах дистанционного управления, электронных игрушках, бытовых радиоприёмниках.

Принцип работы кварцевого резонатора.

Принцип работы кварцевого резонатора целиком и полностью опирается на пьезоэлектрический эффект . Основой любого кварцевого резонатора является пластинка из кварца. Кварц – это одна из разновидностей кремнезема SiO2 . Для изготовления резонаторов пригоден только лишь низкотемпературный кварц, который обладает пьезоэлектрическими свойствами. В природе такой кварц встречается в виде кристаллов и бесформенной гальки.


Кристалл кварца

Химически кварц очень устойчив и не растворяется ни в одной из кислот, за исключением плавиковой. Также кварц очень твёрдый. На шкале твёрдости он занимает седьмое место из десяти.

Чтобы изготовить кварцевую пластинку берётся кристалл кварца и из него под определённым углом вырезается пластинка. От угла, под которым происходит срез, зависят электромеханические свойства кварцевой пластины. Тип среза существенно влияет на температурную стабильность, количество паразитных резонансов, резонансную частоту.

Далее на две стороны кварцевой пластины наносят металлизированный слой (из серебра, никеля, золота или платины) и посредством жёстких проволочных контактов закрепляют в кварцедержателе. Всю эту конструкцию помещают в герметичный корпус.

Кварцевый резонатор является электромеханической колебательной системой. Как известно, любая колебательная система обладает своей резонансной частотой . У кварцевого резонатора также есть своя номинальная резонансная частота . Если приложить к кварцевой пластине переменное напряжение, которое совпадает с резонансной частотой самой кварцевой пластины, то происходит резонанс частот и амплитуда колебаний резко возрастает.

При резонансе электрическое сопротивление резонатора уменьшается. В результате получается эквивалент последовательной колебательной системы. Поскольку потери энергии в кварцевом резонаторе очень малы, то он фактически представляет собой электрический колебательный контур с очень большой добротностью .

Эквивалентная электрическая схема кварцевого резонатора изображена на рисунке.


Эквивалентная электрическая схема кварцевого резонатора

Здесь С – это постоянная (статическая) ёмкость образующаяся за счёт металлических пластин-электродов и держателя. Последовательно соединённые индуктивность L1,конденсатор С1 и активное сопротивление Rакт. отражают электромеханические свойства кварцевой пластинки. Как видим, если отбросить ёмкость монтажа и кварцедержателя С, то получиться последовательный колебательный контур.

При монтаже кварцевого резонатора на печатную плату стоит позаботиться о том, чтобы не перегреть его. Эта рекомендация наверняка связана с тем, что конструкция кварцевого резонатора довольно тонкая. Температурный перегрев может вызвать деформацию кварцедержателя и пластинок-электродов. Естественно, всё это может отразиться на качестве работы резонатора в схеме.

Читать еще:  СЕ генераторы последние данные

Также известно, что если кварц нагреть свыше 573 0 С, то он превращается в высокотемпературный кварц и лишается своих пьезоэлектрических свойств. Конечно, довести температуру кварца до такой температуры оборудованием для пайки нереально.

Обозначение кварцевого резонатора.

На принципиальных схемах и в технической документации кварцевый резонатор обозначается наподобие конденсатора, только между пластинами добавлен прямоугольник, который символизирует пластинку кварца. Рядом с графическим изображением указывается буква Z или ZQ.


Условное обозначение кварцевого резонатора на схемах

Как проверить кварцевый резонатор?

Многие начинающие радиолюбители задаются вопросом: “Как проверить кварцевый резонатор?”

К сожалению, достоверно проверить кварцевый резонатор можно только заменой. Причиной неисправности кварцевого резонатора может быть сильный удар либо падение электронного прибора, в котором он был установлен. Поэтому если есть подозрение в исправности кварцевого резонатора, то его стоит заменить новым. К счастью в практике ремонта неисправность кварцевого резонатора встречается редко, конечно, есть и исключения, но они относятся к портативной электронике, которую частенько роняют.

Более подробную информацию о кварцевых резонаторах вы узнаете из книги, которую найдёте здесь.

Обзор кварцевых генераторов GEYER ELECTRONIC

Компания GEYER ELECTRONIC была основана в 1964 г. и уже несколько десятилетий является одним из лидеров в сфере производства кварцевых резонаторов, генераторов и аналогичных продуктов для формирования частотных сигналов. В дополнение к этому фирма развивает свою деятельность в таких областях, как электрические батареи, аккумуляторы и технологии их зарядки. Высочайшее качество, соответствие высоким требованиям надежности и безопасности — главные особенности продукции фирмы. Чтобы охарактеризовать основные параметры генераторов, стоит вначале рассмотреть принцип действия кварцевых резонаторов и генераторов.

Принцип действия кварцевых резонаторов и генераторов

Принцип работы кварцевых резонаторов основан на применении пьезоэлектрического эффекта.

Некоторые вещества и кристаллы обладают несимметричной структурой (ацентрические кристаллы). Механические силы, действующие на такие кристаллы, вызывают в них не только механические напряжения, но и электрическую поляризацию. В результате на поверхности кристалла образуются заряды. Такой эффект и называют прямым пьезоэлектрическим эффектом, а кристаллы, соответственно, пьезоэлектриками. Самым распространенным пьезоэлектрическим материалом являются кристаллы кварца.

Существует и обратный пьезоэффект: при воздействии на пьезоэлектрик электрического поля в его структуре возникают механические деформации.

Кварцевый резонатор представляет собой специальным образом распиленный, обработанный и сориентированный кристалл кварца, с внешними электродами, расположенными с противоположных сторон. В процессе работы такой резонатор использует и прямой, и обратный пьезоэффект, в нем происходит постоянное преобразование электрического поля в механические деформации и обратно. Однако, с точки зрения электрической схемы, эти механические колебания остаются в стороне, хотя играют важнейшую роль, поскольку они во многом определяют резонансную частоту.

Внешне конструкция резонатора напоминает конструкцию конденсатора, но наличие пьезоэффекта определяет некоторые особенности его поведения. Характер изменения проводимости в области частот, близких к резонансу, оказывается таким же, как и у колебательного контура, что позволяет применять эквивалентную схему замещения. Эквивалентная электрическая схема кварцевого резонатора содержит четыре элемента (рис. 1). Элементы L1, C1, R1 называют динамическими или эквивалентными индуктивностью, емкостью и сопротивлением соответственно. Емкость С0 называют параллельной емкостью. Такая схема хорошо объясняет наличие резонансной частоты.

Рис. 1. Эквивалентная схема кварцевого резонатора

Кварцевый генератор представляет собой комплексный компонент, который содержит генератор, кварцевый резонатор и цепи управления. Простейшая схема включения кварцевого генератора требует только подачи питающего напряжения (рис. 2).

Рис. 2. Схема включения стандартного кварцевого генератора

Генераторы имеют целый ряд важных параметров, определяющих их применимость в тех или иных случаях.

Основные параметры кварцевых генераторов

Все генераторы имеют ряд общих параметров.

Частота

Основной параметр генератора. Значение частоты колебаний генератора может лежать в очень широких пределах — от единиц кГц до тысяч МГц. По характеру возможности изменения частоты генераторы делят на две группы:

  • стандартные и прецизионные генераторы с фиксированной частотой (Crystal Oscillator, XO и Precision Crystal Oscillator, PXO);
  • генераторы с подстраиваемой частотой, например с частотой, управляемой напряжением.

Для генераторов, управляемых напряжением и не использующих стабилизацию частоты кварцевым резонатором (Voltage Control Oscillators, VCO), указывают чувствительность подстройки (Tuning Sensitivity, МГц/В).

Кварцевые генераторы, управляемые напряжением и использующие стабилизацию частоты кварцевым резонатором (Voltage Control Crystal Oscillators, VCXO), имеют небольшой диапазон подстройки частоты из-за высокой добротности кварцевого резонатора. Для них указывают диапазон подстройки (Frequency Adjustment/Pullability/Pulling Range, ppm).

Стабильность частоты

Кварцевый генератор обладает высокой стабильностью благодаря высокой стабильности кварцевого резонатора. Однако стоит помнить, что на стабильность резонатора могут влиять различные факторы: температура, старение, давление, радиация, механические воздействия. Как правило, основным дестабилизирующим фактором является температура, поэтому в документации указывают стабильность частоты для конкретного температурного диапазона. С целью уменьшения температурной зависимости используют два основных метода: термостатирование и термокомпенсирование.

В термокомпенсированных кварцевых генераторах (Temperature Compensated Crystal Oscillator, TCXO) используются специальные электрические цепи и элементы, которые обеспечивают автоматическую подстройку частоты. В качестве таких элементов могут выступать термисторы и варикапы, которые также имеют температурную зависимость, помогающую компенсировать зависимость резонатора.

Джиттер

Джиттер (jitter) характеризует фазовое случайное «дрожание» сигнала (рис. 3). Реальный генератор дает не идеальную частоту сигнала: значения длительности каждого периода отличаются друг от друга. Для характеристики этого «дрожания» применяют:

  • случайный джиттер (random jitter);
  • максимальный джиттер (peak-to-peak jitter).

Рис. 3. Параметры тактового сигнала

Симметричность

Симметричность (symmetry) сигнала — соотношение длительности полупериода сигнала к полному периоду (рис. 3). Важным является как само значение симметрии, так и его допуск на точность.

Длительность фронтов

Длительность фронтов (rise & fall time max) — это время нарастания и спада входных сигналов (рис. 3). Данный параметр важен для приемников тактового сигнала, склонных к возникновению глитчей. Как правило, он не является критичным, если и генератор, и приемник сигнала соответствуют стандартам на уровни и форму сигналов.

Время запуска

Время запуска (start up time) — это время, проходящее от момента подачи питания на микросхему генератора до возникновения стабильного тактового сигнала.

Напряжение питания

Для стандартных генераторов напряжение питания определяет амплитуду выходного сигнала. Соответственно, генератор необходимо выбирать с учетом логических уровней напряжения используемых логических схем (процессоров, микроконтроллеров и т. д.). Одним из способов актуального для современной электроники сокращения потребляемой мощности является уменьшение питающих напряжений: чем меньше питающее напряжение, тем меньше потери мощности и токи потребления.

Ток потребления

Как было сказано выше, ток потребления будет увеличиваться с ростом частоты и напряжения. Поэтому производители указывают ток потребления для определенного диапазона частот и конкретных напряжений. Например, в таблице 1 приведены значения потребляемого тока для серии KXO-V95.

Частота, МГц

Ток потребления (типовой), мА

Кварцевые генераторы — схема и как работает

Основу кварцевых генераторов составляют кварцевые резонаторы.

  1. Кварцевый резонатор
  2. Прямой пьезоэффект
  3. Обратный пьезоэффект

Кварцевый резонатор

— это пластинка кварца, закрепленная определенным образом в кварцедержателе и представляющая собой электромеханическую колебательную систему. Эти резонаторы относятся к пьезоэлектрическим элементам, принцип действия которых основан на использовании прямого и обратного пьезоэффекта.

Прямой пьезоэффект

состоит в том, что механическая нагрузка на материал элемента вызывает появление электрического напряжения между соответствующими поверхностями элемента.

Обратный пьезоэффект

состоит в том, что электрическое напряжение между соответствующими поверхностями элемента, создаваемое с помощью внешнего источника напряжения, вызывает появление механических напряжений, которые могут изменять форму и размеры элемента.

Кварцевые резонаторы изготавливают из природного и искусственного монокристаллического кварца. Из заготовки вырезают пластины, грани которых определенным образом ориентированы относительно кристаллографических осей монокристалла. В рабочем режиме на обкладках пластины имеется переменное напряжение, и имеют место механические колебания пластины. Используются колебания сжатия-растяжения, изгиба, кручения и другие.

При анализе схемы с кварцевым резонатором (рис. 2.69, а) его удобно заменять эквивалентной схемой, представленной на рис 2.69, б.

Необходимо отметить, что именно эта эквивалентная схема кварцевого резонатора используется в пакете программ «PSpice» для моделирования электронных схем. В эквивалентной схеме могут иметь место и параллельный, и последовательный резонанс. На практике используют оба вида резонанса.

На частоте последовательного резонанса ωk= 1/(Lk·Ck) 1/2 резонатор имеет минимальное сопротивление Rk.Частота параллельного резонанса ω ≈ 1/ [ Lk · Ck· C / ( Ck+ C ) ]1/2.

В диапазоне частот между ωk и ω резонатор ведет себя как некоторая индуктивность.

Кварцевые резонаторы характеризуются высокой стабильностью и добротностью (Qk= 10 4 − 10 5 ). Использование кварцевых резонаторов позволяет снизить относительное изменение частоты генераторов до очень малых значений (10 −6 − 10 −9 ).

Приведем для примера упрощенную схему кварцевого генератора на основе операционного усилителя при использовании последовательного резонанса (рис. 2.70).

На частоте последовательного резонанса в схеме имеет место сильная положительная обратная связь, что и поддерживает автоколебания.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector