Dilmet-pro.ru

Стройка и Ремонт
13 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Турбогенератор назначение и принцип действия

1. Магнитопровод и вал ротора

1.1. Изготовление ротора

Высокая частота вращения приводит к возникновению в роторе больших механических напряжений из-за действия центробежных сил. Для получения необходимой прочности ротор изготавливают массивным цилиндрическим из цельной стальной поковки. В качестве материала для роторов турбогенераторов относительно небольшой мощности с воздушным охлаждением используют углеродистую кованную сталь марки 35. Рогоры крупных турбогенераторов изготавливают из высоколегированной стали марок: ОХНЗМ, ОХН4МАР, 35ХНМ, 35ХНЗМА 35ХН4МА. 35ХН1МФА, 36ХНМА. 36ХНЗМФА, 36ХН1Н. на электромашиностроительном заводе из заготовки вытачивают все ступени ротора с припуском до чистоты, необходимой для проведения ультразвуковой дефектоскопии. По отражению звуковой волны удается обнаруживать дефекты размером более 3 мм на большой глубине. После чистовой обработки в роторе фрезеруют пазы под обмотку, токоподводы и для вентиляции (рис. 1). Пазы под обмотку возбуждения занимают примерно 2/3 окружности бочки ротора. Оставшаяся свободной третья часть, образует два диаметрально расположенных больших зубца, через которые проходит главная часть магнитного потока генератора. В турбогенераторах российского производства используют четыре формы пазов (рис. 2), Глубина пазов определяется допустимой толщиной основания зубца, где возникают наибольшие растягивающие напряжения при вращении ротора.

В генераторах с форсированным охлаждением ротора на зубцах фрезеруют скосы для улучшения входа газа из зазора в отверстия пазовых клиньев (рис. 3).

При косвенном охлаждении обмотки возбуждения на поверхно­сти ротора прорезают поперечные винтовые канавки небольшой глубины. Такое рифление бочки уменьшает поверхностные потери и увеличивает наружную поверхность, что приводит к улучшению охлаждения ротора. Температура обмотки ротора снижается в результате на 7—10 0 С.

Для выхода газа, охлаждающего лобовые части обмотки ротора, в больших зубцах прорезают по два вентиляционных паза такой же ширины, как и пазы для обмотки, но меньшей глубины. Вентиляционные пазы служат также для более эффективного охлаждения бочки ротора.

В роторах машин небольшой мощности для токоподвода обмотки возбуждения на валу со стороны возбудителя фрезеруют два диаметрально расположенных паза. В турбогенераторах, имеющих контактные кольца, вынесенные за подшипник, для токоподвода используют центральное отверстие ротора. Пазы токоподвода соединяют двумя отверстиями с центральным отверстием, которое дополнительно растачивают для укладки стержней токоподвода. Радиальные отверстия сверлят и в месте установки контактных колец.

В больших зубьях роторов с форсированным охлаждением об мотки вдоль первых обмоточных пазов сверлят два ряда отверстий для размещения балансировочных грузов. В турбогенераторах с поверхностным охлаждением ротора отверстия для балансировочных грузов сверлят в пазовых клиньях.

Для крепления центрирующего кольца и вентилятора на каждом хвостовике ротора обрабатывают посадочные площадки. Все кромки и углы пазов и зубцов ротора выполняют с закруглениями для устранения концентрации напряжений в этих местах. С аналогичной целью ступени ротора с различным диаметром имеют переходный радиус.

Участок вала, опирающийся на подшипник, называют цапфой. Размеры цапфы выбирают из соображений механической прочности самого вала и режима работы подшипника. Обрабатывают цапфы вала на полностью собранном роторе.

1.2. Конструкция обмотки ротора

Обмотка возбуждения двухполюсного турбогенератора состоит со ответственно из двух групп катушек, укладываемых в пазы ротора. Катушки, принадлежащие одной группе, располагаются концентрически на одном полюсном делении ротора относительно его большого зуба (рис. 4). Таким образом, обмотка возбуждения турбогенератора является распределенной, благодаря чему достигается близкая к синусоидальной форма МДС ротора. Число катушек в группе может составлять 7—10, а число витков в катушке 5—28. Рассмат- риваемые далее особенности конструкции обмоток возбуждения во многом определяются используемой системой охлаждения.

Ротор с поверхностным охлаждением. Каждую катушку обмотки возбуждения наматывают непрерывно из сплошного провода. На мотку производят на ребро, Для машин небольшой мощности используют проводник из чистой электролитической меди, а для более мощных генераторов — проводник из меди с присадкой серебра, который обладает значительно более высокой прочностью. Это объясняется тем, что витки обмотки возбуждения с течением времени укорачиваются. Укорочение может достигать 30—40 мм и является следствием одновременного действия термических напряжений н центробежных сил при пусках машины. При недостаточной механической прочности укорочение витков может привести к разрушению изоляции или меди обмотки возбуждения. Из-за намотки провода на ребро в углах изгиба происходит утолщение меди по внутреннему радиусу проводника. Общее увеличение высоты катушки состав- ляет несколько сантиметров. Поэтому утолщение каждого витка устраняют опиловкой или обжатием на специальном прессе.

Соединяют катушки между собой последовательно. Соединение выполняют по такой схеме; верхний виток одной катушки — с верх ним витком следующей, соответственно нижний виток — с нижним витком. При такой схеме четные катушки должны иметь правую намотку, а нечетные — левую. Специальных перемычек между катушками не требуется, так как их витки спаивают встык под углом 45° к оси проводника. Соединение между группами катушек выполняют обычно по верхним виткам, что возможно только при чет ном числе катушек на полюс. Выводные концы обмотки возбуждения изготавливают гибкими из набора медных шин толщиной 0,3 0,5 мм, которые крепят я пазах вала стальными клиньями.

Электрическая прочность корпусной изоляции обмотки возбуждения определяется максимальным испытательным напряжением, которое, в своё очередь, зависит от величин перенапряжении, возникающих в обмотке при аварийном разрыве цепи возбуждения. С другой стороны толщина корпусной изоляции ограничена допустимым температурным перепадом, который не должен быть выше 25—30°С. С учетом этих двух противоположных факторов толщину гильзы выбирают в пределах 1—1,2 мм.

Начиная с мощности 500 МВт и выше турбогенераторы серии ТВВ имеют трапецеидальный паз ротора. Сечение обмотки возбуждения при этом увеличивается до 30%. Однако это достигается за счет усложнения фрезерования пазов и выполнения катушек с витками различной ширины. Поперечный разрез паза генератора ТВВ-500-2 показан на рис. 5 , а. Прямолинейная пазовая часть катушки с трапецеидальным сечением выходит на 30 мм с каждой стороны из бочки ротора. Лобовые части катушек имеют уже прямоугольное сечение (рис. 5, б) с внутренними продольными каналами для охлаждения. На выходе из бочки ротора пазовая изоляция имеет дополнительные манжеты из стеклотекстолита. Пазы в этих местах несколько расширены.

Крепление лобовых частей обмотки возбуждения генераторов серии ТВВ показано на рис. 5, в. В аксиальном и тангенциальном направлениях катушки плотно закреплены специальными клиньями. Между кольцом и обмоткой установлены изоляционные сегменты. Компенсирующие устройства позволяют обмотке удлиняться при ее нагревании.

2. Пазовые клинья и демпферная система ротора

Клинья крепят в пазах ротора обмотку возбуждения и совместно с зубцами образуют демпферную систему ротора. При работе турбо генератора высшие пространственные гармоники поля статора индуцируют в бочке ротора вихревые токи, вызывающие дополнительные потери. При несимметричных режимах вихревые токи могут явиться причиной местных перегревов и снижения прочности бочки ротора. Демпферная система разгружает ротор от протекания вихревых токов и ослабляет магнитные поля, приводящие к их возник- никновению. Следовательно, клинья должны быть изготовлены из материала не только с высокой механической прочностью, но и хорошей электропроводностью. Клинья должны быть немагнитными, чтобы не увеличивать поле рассеяния обмотки возбуждения, Основные характеристики металлов, применяемых для изготовления клиньев, приведены в табл.1, а формы пазовых клиньев показаны на рис. 6.

Механические свойства металла клиньев

Предел прочности, 10 7 Па

Предел текучести, 10 7 Па

Относительное удлинение t 0 » 5 d , %

Автомобильный генератор: назначение и принцип работы

Каждый автомобиль оснащается бортовой электрической сетью, которая выполняет многие функции – запуск силовой установки при помощи электростартера, создание искрового разряда для воспламенения горючей смеси (бензиновые моторы), обеспечение светозвуковой сигнализацией и освещением, повышение комфортабельности в салоне и еще ряд других. Но тот же стартер, лампы и приводные двигатели являются потребителями электричества и для того, чтобы их обеспечить электроэнергией в авто имеется два источника электрического тока – аккумулятор и генератор.

АКБ обеспечивает бортовую сеть авто энергией до того момента, пока силовая установка не запуститься. Особенностью аккумуляторной батареи является то, что она электрический ток не вырабатывает, а всего лишь удерживает его в себе и при надобности отдает. Поэтому использовать только аккумулятор невозможно, поскольку он попросту со временем разрядится, то есть отдаст всю накопленную энергию. И произойдет это быстро, если часто запускать мотор, поскольку стартер является одним из самых сильных потребителей в бортовой сети.

Назначение

Чтобы после запуска силовой установки восстановить заряд аккумулятора, а также обеспечить энергией все остальные электроприборы, используется генератор. Этот электрический элемент, в отличие от аккумулятора вырабатывает электричество, при этом делать он это может постоянно. Но для выработки электротока необходима механическая работа – вращение одной из составляющих частей генератора – ротора.

Поэтому пока мотор не запущен, генератор не способен выработать энергию, и бортовая сеть запитывается только от аккумулятора.

Генератор – этот тот же электродвигатель, но работа его выполняется с точностью до наоборот. Если в эл. двигатель подается энергия, чтобы получить механическое действие – вращение ротора, то у генератора – вращение обеспечивает выработку электрической энергии.

Если по-простому, то принцип действия генератора таков: при вращении ротора он образует магнитное поле, воздействующее на обмотку статора, из-за чего в ней появляется электрический ток, который и используется для питания бортовой сети.

Но имеются и определенные нюансы в работе данного элемента бортовой сети. Современный автомобильный генератор является трехфазным и обеспечивает на выходе переменный ток, который не подходит для электрообеспечения бортовой сети авто, поскольку в ней используется постоянный ток. К тому же, генератор должен вырабатывать электроэнергию с определенными показателями, чтобы не нанести вред потребителям. Поэтому в данный прибор включен ряд элементов дополнительного оснащения.

Устройство генератора для автомобиля

Генератор в разрезе

Итак, основными элементами генератора являются:

  1. ротор – подвижная составляющая
  2. статор – неподвижная.

Ротор – это вал, на котором располагается обмотка возбуждения, две полюсные половины, образующие полюсную систему и контактные кольца. Основная задача обмотки возбуждения – создание магнитного поля. Но для достижения данного эффекта на нее нужна подача электрического тока небольшого значения. Пока двигатель не запущен ток для возбуждения поля берется от аккумулятора. После запуска и достижения определенных оборотов, на обмотку начинает уже подаваться ток, выработанный генератором, то есть прибор переходит в режим самостоятельного возбуждения.

Читать еще:  Проверяем исправность аккумулятора машины

Обмотка возбуждения помещена между двух полюсных половинок. Эти половинки изготовлены методом штамповки, что позволило сформировать на них по 6 клювообразных выступов, которые размещены поверх обмотки.

Контактные кольца нужны для подачи электрического тока на обмотку. К этим кольцам подходят выводы обмотки возбуждения.

Дополнительно на роторе располагаются шкив привода, вентилятор охлаждения и подшипники качения.

Статор предназначен для получения переменного тока, который образуется из-за воздействия магнитного поля ротора. Состоит он из двух частей – сердечника и обмоток. Сердечник представляет собой пакет, собранный из листовой стали. В нем сделаны пазы, в которые укладываются обмотки — три штуки (три фазы). Укладка их производится петлевым или волновым методом. При этом они объединены между собой по одной из таких схем – «звезда» или «треугольник».

Схема «звезда» сводится к тому, что одни концы каждой из обмоток соединены в одной точке, а другие концы являются выводами. В «треугольнике» же соединение обмоток выполнено по кольцу – первая обмотка подсоединена ко второй, вторая – к третьей, третья – к первой. Точки соединения обмоток и являются выводами.

Ротор помещается внутрь статора, а тот в свою очередь зажимается между двумя крышками корпуса. В этих же крышках имеются и посадочные места под подшипники ротора. В передней крышке (та, что со стороны шкива) проделаны вентиляционные отверстия.

В задней же крышке размещены остальные необходимые элементы:

  • блок щеток;
  • диодный мост, он же выпрямительный блок;
  • регулятор напряжения.

Блок щеток предназначен для передачи электрического тока на обмотку возбуждения. Для этого данный блок включает в свою конструкцию две подпружиненные графитные щетки, размещенные в корпусе. Пружины поджимают эти щетки к контактным кольцам, но жесткого соединения между ними нет.

Диодный мост обеспечивает преобразование переменного тока в постоянный. Конструкция его включает шесть диодов, установленных в теплоотводящие пластины. На каждую из обмоток статора приходится по два диода – «плюс» и «минус».

Регулятор напряжения – элемент, обеспечивающий поддержание выходного напряжения в строго заданном диапазоне. Дело в том, что от оборотов мотора зависит количество и параметры вырабатываемой энергии. АКБ же очень «чувствительна» к подаваемому на нее напряжению. Если оно будет недостаточным, то у аккумулятора будет недозаряд, а при избытке его – перезаряд. И то, и другое приводит к значительному снижению ресурса АКБ. На современных авто используются полупроводниковые электронные регуляторы, которые зачастую выполнены заодно с блоком щеток.

Как работает автомобильный генератор

Теперь о том, как все функционирует. При включении зажигания на обмотку возбуждения подается напряжения через блок щеток и контактные кольца, из-за чего вокруг нее появляется магнитное поле. Поскольку ротор после запуска мотора постоянно вращается, и магнитное поле его обмотки вместе с ним. Это поле воздействует на обмотки статора, из-за чего на их выводах появляется электрический переменный ток, который подается на выпрямительный блок. На выходе из него идет уже постоянный ток, который поступает на регулятор напряжения. Часть его подается на щетки для обеспечения режима самовозбуждения, остальное же идет на подзарядку АКБ и запитку потребителей.

Регулировка выходного напряжения регулятором организована достаточно просто. Поскольку он связан с блоком щеток, то он просто меняет напряжение, подаваемое на обмотку возбуждения, что в свою очередь сказывается на магнитном поле и на количестве вырабатываемой энергии. Еще одна особенность работы регулятора – термокомпенсация. Она сводится к тому, напряжение, подаваемое на аккумулятор, меняется от температуры. При низкой температуре напряжение – повышенное, но по мере возрастания температурного показателя напряжение будет снижаться.

Видео: Быстрая проверка ГЕНЕРАТОРА не устанавливая на авто

Основные неисправности

Генератор имеет вполне надежную конструкцию, но и у него бывают неисправности. Их можно поделить на механические и электрические.

Экспертный обзор почему генератор не дает зарядку в этой статье https://topmekhanik.ru/generator-ne-daet-zaryadku/

  1. Механические неисправности обычно появляются из-за износа, которому подвержены подшипники, щетки, приводной ремень и шкив. Обычно эти поломки выявить несложно, поскольку все они сопровождаются появлением сторонних шумов или писка со стороны генератора. Устраняются эти неисправности обычно заменой изношенного элемента.
  2. Электрических неисправностей больше – обрыв или замыкание обмоток ротора или статора, пробой диодов, выход из строя регулятора. Эти неисправности как выявить, так и устранить более сложно. При этом электрические неисправности до момента выявления могут негативно повлиять на АКБ. К примеру, неисправный регулятор обеспечивает постоянный перезаряд батареи. Признаков при этом никаких особенных не будет, а выявить неисправность можно только путем замера выходного напряжения из генератора. Но до момента выявления поломки регулятора он может уже нанести непоправимый вред аккумулятору.

Все электрические неисправности, помимо обрыва и замыкания, обычно устраняются заменой неисправного элемента. Что же касается проблем с обмотками, то они исправляются перемоткой.

Чтобы избежать проблем с генератором, необходимо периодически оценивать состояние его привода, подшипников, щеток, а также проводить замеры выходного напряжения.

Генератор

специальная подборка
от 5 до 18 кВА

самые надёжные бытовые
и профессиональные модели

Устройство генератора

Генератор состоит из следующих основных узлов:

Приводной двигатель, включая системы смазки, подачи топлива, охлаждения, выхлопа и шумоподавления. В зависимости от типа привода — бензинового, дизельного или газового двигателя внутреннего сгорания, различают соответственно бензиновые генераторы, дизельные генераторы и газовые генераторы;

Альтернатор, который вращается от приводного двигателя и генерирует переменное 1-но или 3-х фазное напряжение;

Контрольно-измерительные приборы и автоматика (КИПиА) — осуществляют контроль за работой всех составляющих генератора, реализуют его автоматическое включение при пропадании основного сетевого напряжения, а так же защиту двигателя и альтернатора от аварийных режимов и выхода из строя;

Рама (каркас, корпус) — объёмная или плоскостная конструкция, связывающая все перечисленные агрегаты в единый комплекс. В раму чаще всего встраивается штатный топливный бак для работы станции без дозаправки на время от 3 до 15-20 часов.

Типы генераторов

Бензиновые генераторы

Генераторы на базе 4-х тактных бензиновых двигателей предназначены для продолжительной эксплуатации — около 6-8 часов ежедневно).

Бензиновые генераторы выпускаются в основном мощностью до 15 кВА, характеризуются небольшими размерами, весом, уровнем шума, простотой в эксплуатации и сравнительной экологической чистотой. Они используются как мобильные, аварийные или резервные источники электропитания в период отключения основной электроэнергии на даче, ферме, торговой точке, или как источник электроснабжения в полевых условиях (на стройке в походе и т.п.) для осветительного, сварочного, строительного и другого оборудования.

Бензиновые генераторы

Бензиновый генератор существенно дешевле, чем дизельный, но затраты на топливо для него выше. (Кстати, следует отметить более высокую пожароопасность бензина по сравнению с дизельным топливом). Они имеют меньший уровень шума (55-72 дБ) по сравнению с дизельными (80-110 дБ), а также гораздо легче запускаются при низких температурах окружающей среды, чем дизельные, из-за меньшей вязкости топлива.

Дизельные генераторы

Выпускаются с двигателями с различной частотой оборотов коленвала: 1500 об./мин. или 3000 об./мин. Первые являются более тихими и имеют увеличенный ресурс работы двигателя (наработка на отказ 15 000 — 40 000 часов), при необходимости они могут работать без останова двигателя круглые сутки. Вторые дешевле и меньше по весо-габаритным характеристикам, но обладают повышенным шумом, имеют более высокий расход топлива и значительно меньший ресурс.

В дизельных генераторах для увеличения мощности при сохранении габаритов, веса и объема камеры сгорания применяется турбонаддув. Воздух в двигателях, прежде чем попасть в камеру сгорания, сжимается в турбокомпрессоре. Его турбина приводится в движение выхлопными газами. После сжатия воздух либо сразу направляется в камеру сгорания, либо охлаждается в промежуточном радиаторе и также поступает в камеру сгорания двигателя.

Дизельные генераторы, собранные на высокооборотных двигателях воздушного охлаждения, считаются резервными, с наработкой порядка 500 моточасов в год, их использование в качестве основных источников электроэнергии не рекомендуется. Для круглосуточной работы без ограничения наработки должны применяться дизельные генераторы только с жидкостным охлаждением и с вращением коленвала 1500 об./мин. Такие электроагрегаты отличаются долговечностью, оптимальным расход топлива, низким шумом и высоким моторесурсом.

Дизельные генераторы

Дизельный генератор более экономичен и надёжен, чем бензиновый, но стоит значительно дороже. Диапазон мощностей очень широк: от нескольких кВт до нескольких МВт. Возможно создание энергосистемы, состоящей из нескольких агрегатов, работающих параллельно с наращиванием или резервированием мощности.

Газовые генераторы

Работают на природном магистральном (NG) и на сжиженном (LPG) газе. Делятся на два типа: воздушного охлаждения и жидкостного. Первые имеют мощность до 15 кВА и используются в основном для резервного электропитания. Вторые имеют большую мощность и применяются при очень продолжительных отключениях коммунальных электрических сетей. Комплектуются автоматикой и системой подогрева. Отличаются малым очень уровнем шумов и высокой экологичностью. >>> подробнее

Газовый генератор

Сварочные генераторы

Представляет собой обычный бензиновый или дизельный генератор, в котором установлен специальный сварочный альтернатор, адаптированный к значительным мгновенным перегрузкам, а также сварочный аппарат — трансформатор или выпрямитель. Сварочные генераторы могут применяться как для сварочных работ, так и для электропитания различного оборудования, но одновременное совмещение этих двух функций не разрешается. Электрическая мощность составляет от 3 до 10 кВА (220 или 380 В), ток сварочного аппарата — от 170 до 300 А. Стоимость самой популярной профессиональной модели SDMO VX 200/4H C составляет порядка
128 000 руб.

Сварочный генератор

Альтернатор

Это устройство, которое механическую энергию вращения двигателя преобразует в электрическую. В зависимости от назначения генератора применяются асинхронные и синхронные альтернаторы 1-но или 3-х фазного исполнения.

Синхронные альтернаторы отличаются более высоким качеством вырабатываемой электроэнергии и способностью выдерживать 3-х кратные мгновенные перегрузки. Они построены конструктивно сложнее асинхронных: например, у них на роторе находятся обмотки.

Читать еще:  Как прозвонить генератор ваз 2110 мультиметром

Асинхронные альтернаторы дешевле и устроены гораздо проще синхронных: их ротор напоминает обычный маховик, но качество генерируемого электричества невысокое. Если к генератору с таким генератором подключается электродвигатель с большими пусковыми токами (холодильник, насос, электроинструмент), то нужно делать соответственный запас по мощности выбираемого генератора с асинхронным генератором, который не переносит пиковых перегрузок. Асинхронные применяются только в некоторых переносных моделях, в профессиональных и стационарных устанавливаются только синхронные.

Альтернаторы

Частота выходного напряжения генератора зависит от частоты вращения приводного двигателя, которая в свою очередь зависит от величины нагрузки и от количества полюсов альтернатора. Чем больше нагрузка, тем меньше частота вращения двигателя и, соответственно, меньше частота выходного напряжения. Чтобы частота вырабатываемой электроэнергии не выходила за пределы, определенные ГОСТом, применяются регуляторы оборотов двигателя.

Частота вращения двигателя стабилизируется двумя видами регуляторов:

  • механическими, которые настроены таким образом, что при нагрузке 75-90% частота выходного напряжения равна 50 Гц. Соответственно, на более малых нагрузках (10-30 % от номинала генератора) частота напряжения будет в пределах 52-53 Гц;
  • электронными, предназначенными поддерживать постоянную частоту 50 Гц вне зависимости от суммарной нагрузки на двигатель. Генераторы с электронной стабилизацией частоты вращения двигателя стоят дороже обычных с механическим регулятором.

Силовая часть альтернатора и цепи нагрузки комплектуется автоматами защиты или трёхполюсными переключателями-автоматами с ручным или электрическим приводом. Напряжение можно снимать либо через вмонтированные в распределительный щит розетки (на маломощных генераторах), либо через клеммные выводы.

Контрольно-измерительные приборы и автоматика (КИПиА)

Применение микропроцессоров позволяет генератору обрабатывать несколько десятков признаков неполадок, регистрировать дату и время признаков отклонений параметров работы узлов в режиме реального времени, программировать режимы работы, осуществлять запуск, синхронизацию, включение и выключение в автоматическом режиме. Для дистанционного управления энергосистемой используются телекоммуникационные модули, осуществляющие по интерфейсам RS232 и RS485 удаленный контроль и регулирование различных параметров генератора и его управление.

Типы запуска генераторов

Ручной режим пуска используется на компактных бензиновых и мобильных дизельных генераторах, которые используются для автономного питания нагрузок при авариях (питание пожарных насосов, откачивающих насосов при наводнениях, сварочные и вспомогательные агрегаты при ремонте трубопроводов), различных выездных мероприятиях (концерты, выставки и т.п.).

Для автоматического резервного режима работы используется более сложная схема управления и больший набор элементов автоматики. Когда в сети есть напряжение, генератор не работает, находится в дежурном режиме. При пропадании напряжения автоматикой подается управляющий сигнал на запуск двигателя, и через 3-10 секунд он достигает номинального числа оборотов. Если двигатель не запускается, то управляющий сигнал на запуск повторяется (до 3-5 6 раз). Через 10-30 секунд после достижения электрогенератором заданного напряжения и частоты, нагрузка автоматически переключается на питание от генератора.

Когда напряжение в сети восстанавливается, происходит автоматическое переключение нагрузки с генератора обратно на сеть с задержкой, необходимой автоматике для определения стабильности появившегося напряжения и частоты. После восстановления напряжения в сети агрегат несколько минут продолжает работу на холостом ходу для охлаждения двигателя и электрогенератора, а затем останавливается. После остановки он сразу готов к запуску. При такой конфигурации аккумулятор автоматически подзаряжается от сети. При отрицательных температурах происходит включение электронагревателя охлаждающей жидкости двигателя, что позволяет сразу после запуска снимать с электрогенератора полную нагрузку и сводит к минимуму отказы при пуске станции при пропадании основной сети. Различные дополнительные опции облегчают эксплуатацию генератора (запись параметров в память и передача их на расстояние либо по проводной/телефонной/линии, либо передача аварийных сообщений на пейджер или сотовый телефон), возможность дистанционного пуска и т.п.

Виды электрических генераторов и принципы их работы

Электрическим генератором называется машина или установка, предназначенная для преобразования энергии неэлектрической — в электрическую: механической — в электрическую, химической — в электрическую, тепловой — в электрическую и т. д. Сегодня в основном, произнося слово «генератор», мы имеем ввиду преобразователь механической энергии — в электрическую.

Это может быть дизельный или бензиновый переносной генератор, генератор атомной электростанции, автомобильный генератор, самодельный генератор из асинхронного электродвигателя, или тихоходный генератор для маломощного ветряка. В конце статьи мы рассмотрим в качестве примера два наиболее распространенных генератора, но сначала поговорим о принципах их работы.

Так или иначе, с физической точки зрения принцип работы каждого из механических генераторов — один и тот же: явление электромагнитной индукции, когда при пересечении линиями магнитного поля проводника — в этом проводнике возникает ЭДС индукции. Источниками силы, приводящей к взаимному перемещению проводника и магнитного поля, могут быть различные процессы, однако в результате от генератора всегда нужно получить ЭДС и ток для питания нагрузки.

Принцип работы электрического генератора — Закон Фарадея

Принцип работы электрического генератора был открыт в далеком 1831 году английским физиком Майклом Фарадеем. Позже этот принцип назвали законом Фарадея. Он заключается в том, что при пересечении проводником перпендикулярно магнитного поля, на концах этого проводника возникает разность потенциалов.

Первый генератор был построен самим Фарадеем согласно открытому им принципу, это был «диск Фарадея» — униполярный генератор, в котором медный диск вращался между полюсами подковообразного магнита. Устройство давало значительный ток при незначительном напряжении.

Позже было установлено, что отдельные изолированные проводники в генераторах проявляют себя гораздо эффективнее с практической точки зрения, чем сплошной проводящий диск. И в современных генераторах применяются теперь именно проволочные обмотки статора (в простейшем демонстрационном случае — виток из проволоки).

Генератор переменного тока

В подавляющем своем большинстве современные генераторы — это синхронные генераторы переменного тока. У них на статоре располагается якорная обмотка, от которой и отводится генерируемая электрическая энергия. На роторе располагается обмотка возбуждения, на которую через пару контактных колец подается постоянный ток, чтобы получить вращающееся магнитное поле от вращающегося ротора.

За счет явления электромагнитной индукции, при вращении ротора от внешнего привода (например от ДВС), его магнитный поток пересекает поочередно каждую из фаз обмотки статора, и таким образом наводит в них ЭДС.

Чаще всего фаз три, они смещены физически на якоре друг относительно друга на 120 градусов, так получается трехфазный синусоидальный ток. Фазы можно соединить по схеме «звезда» либо «треугольник», чтобы получить стандартное сетевое напряжение.

Частота синусоидальной ЭДС f пропорциональна частоте вращения ротора: f = np/60, где — p — число пар магнитных плюсов ротора, n – количество оборотов ротора в минуту. Обычно максимальная скорость вращения ротора — 3000 оборотов в минуту. Если подключить к обмоткам статора такого синхронного генератора трехфазный выпрямитель, то получится генератор постоянного тока (так работают, кстати, все автомобильные генераторы).

Упрощенная схема трехфазного генератора переменного тока:

Трехмашинный синхронный генератор

Конечно, у классического синхронного генератора есть один серьезный минус — на роторе располагаются контактные кольца и щетки, прилегающие к ним. Щетки искрят и изнашиваются из-за трения и электрической эрозии. Во взрывоопасной среде это не допустимо. Поэтому в авиации и в дизель-генераторах более распространены бесконтактные синхронные генераторы, в частности — трехмашинные.

У трехмашинных устройств в одном корпусе установлены три машины: предвозбудитель, возбудитель и генератор — на общем валу. Предвозбудитель — это синхронный генератор, он возбуждается от постоянных магнитов на валу, генерируемое им напряжение подается на обмотку статора возбудителя.

Статор возбудителя действует на обмотку на роторе, соединенную с закрепленным на ней трехфазным выпрямителем, от которого и питается основная обмотка возбуждения генератора. Генератор генерирует в своем статоре ток.

Газовые, дизельные и бензиновые переносные генераторы

Сегодня очень распространены в домашних хозяйствах дизельные, газовые и бензиновые генераторы, которые в качестве приводных двигателей используют ДВС — двигатель внутреннего сгорания, передающий механическое вращение на ротор генератора.

У генераторов на жидком топливе имеются топливные баки, газовым генераторам — необходимо подавать топливо через трубопровод, чтобы затем газ был подан в карбюратор, где превратится в составную часть топливной смеси.

Во всех случаях топливная смесь сжигается в поршневой системе, приводя во вращение коленвал. Это похоже на работу автомобильного двигателя. Коленвал вращает ротор бесконтактного синхронного генератора (альтернатора).

Лучшие инверторные генераторы домашних электростанций имеют встроенный аккумулятор для компенсации перепадов и систему двойного преобразования, у таких устройств переменное напряжение получается более стабилизированным.

Автомобильные генераторы

Еще один пример генератора переменного тока — самый распространенный в мире вид генератора — автомобильный генератор. Данный генератор традиционно содержит обмотку возбуждения с контактными кольцами на роторе и трехфазную обмотку статора с выпрямителем.

Встроенный электронный регулятор удерживает напряжение в допустимых для автомобильного аккумулятора пределах. Автомобильный генератор — высокооборотный генератор, его обороты могут достигать 9000 в минуту.

Хотя изначально ток получается переменным (полюсные наконечники ротора поочередно и в разной полярности пересекают своими магнитными потоками три фазы обмотки статора), затем он выпрямляется диодами и превращается в постоянный, пригодный для зарядки аккумулятора.

Необычные конструкции электрических генераторов:

Принцип работы ТЭЦ

Интерактивное приложение «Как работает ТЭЦ» (JPG, 377 КБ)

На картинке слева — электростанция « Мосэнерго » , где вырабатывается электроэнергия и тепло для Москвы и области. В качестве топлива используется самое экологически чистое топливо — природный газ. На ТЭЦ газ поступает по газопроводу в паровой котел. В котле газ сгорает и нагревает воду.

Чтобы газ лучше горел, в котлах установлены тягодутьевые механизмы. В котел подается воздух, который служит окислителем в процессе сгорания газа. Для снижения уровня шума механизмы снабжены шумоглушителями. Образовавшиеся при горении топлива дымовые газы отводятся в дымовую трубу и рассеиваются в атмосфере.

Раскаленный газ устремляется по газоходу и нагревает воду, проходящую по специальным трубкам котла. При нагревании вода превращается в перегретый пар, который поступает в паровую турбину. Пар поступает внутрь турбины и начинает вращать лопатки турбины, которые связаны с ротором генератора. Энергия пара превращается в механическую энергию. В генераторе механическая энергия переходит в электрическую, ротор продолжает вращаться, создавая в обмотках статора переменный электрический ток.

Читать еще:  Мотор генератор на неодимовых магнитах

Через повышающий трансформатор и понижающую трансформаторную подстанцию электроэнергия по линиям электропередач поступает потребителям. Отработавший в турбине пар направляется в конденсатор, где превращается в воду и возвращается в котел. На ТЭЦ вода движется по кругу. Градирни предназначены для охлаждения воды. На ТЭЦ используются вентиляторные и башенные градирни. Вода в градирнях охлаждается атмосферным воздухом. В результате выделяется пар, который мы и видим над градирней в виде облаков. Вода в градирнях под напором поднимается вверх и водопадом падает вниз в аванкамеру, откуда поступает обратно на ТЭЦ. Для снижения капельного уноса градирни оснащены водоуловителями.

Водоснабжение осуществляется от Москвы-реки. В здании химводоочистки вода очищается от механических примесей и поступает на группы фильтров. На одних она подготавливается до уровня очищенной воды для подпитки теплосети, на других — до уровня обессоленной воды и идет на подпитку энергоблоков.

Цикл, используемый для горячего водоснабжения и теплофикации, также замкнутый. Часть пара из паровой турбины направляется в водонагреватели. Далее горячая вода направляется в тепловые пункты, где происходит теплообмен с водой, поступающей из домов.

Высококлассные специалисты « Мосэнерго » круглосуточно поддерживают процесс производства, обеспечивая огромный мегаполис электроэнергией и теплом.

Как работает парогазовый энергоблок

Ацетиленовый генератор: виды, устройство и принцип работы

Ацетилен является бесцветным горючим газом. Это вещество является соединением углерода и кислорода, полученным в результате химической реакции. Применяется ацетилен для сваривания металлов, в химической промышленности, а также для производства взрывчатых веществ.

Этот газ является полностью синтетическим, поэтому, в отличие от метана, пропана и других природных летучих веществ, может быть приготовлен непосредственно на месте производственного процесса. Для получения ацетилена используются генераторы, в которых этот газ образуется при реакции карбида кальция с водой.

Виды ацетиленовых генераторов

Ацетиленовые генераторы могут отличаться по принципу работы и производительности. По способу добавления карбида кальция такие установки разделяются следующим образом:

  • Карбид в воду.
  • Вода на карбид.
  • Вытеснение воды.
  • Комбинированный способ.

В первом варианте происходит порционное добавление карбида кальция в воду. Во втором способе получение ацетилена осуществляется добавлением Н2О в сухой СаС2. В устройствах, основанных на принципе вытеснения воды жидкость подаётся автоматически на карбид. Интенсивность орошения сухого вещества находится в обратной зависимости с давлением внутри камеры. В комбинированных установках используются одновременно второй и третий способ получения газа.

Ацетиленовые генераторы существенно отличаются по размерам. Например, для проведения газосварочных работ используются мобильные изделия небольшого объёма. Промышленные установки могут занимать отдельное помещение, иметь объём тысячи литров и стоить более 1 млн. рублей.

Устройство и принцип работы ацетиленового генератора

Основной принцип получения ацетилена в генераторе заключается в реакции карбида кальция с водой. Учитывая тот факт, что этот газ является взрывоопасным, а давление внутри баллона может превысить максимальное значение, механизмы по добавлению твёрдого вещества или воды подобраны таким образом, чтобы исключить вероятность взрыва или разгерметизации ёмкости.

Принцип работы ацетиленового генератора «карбид в воду»

Генераторы, в которых для образования ацетилена карбид подаётся в воду, состоят из основной газообразующей камеры и бункера с СаС2. Ёмкость с сухим реагентом находится выше уровня жидкости в резервуаре и когда давление падает ниже определённого значения, происходит вбрасывание новой порции в воду.

В верхней части такой установки имеется газовый отборник, через который газ поступает к сварочной установке либо другим устройствам, работающим на ацетилене. Внизу ёмкости имеется решётка, служащая фильтром для гашённого карбида. Удаление отработанного кальциевого вещества также осуществляется в нижней части генератора через выпускной клапан.

Преимуществом установок работающих по принципу «карбид в воду» является практически полное разложение карбида кальция в воде, хорошее охлаждение и удобство обслуживания и эксплуатации. Недостатком такого вида генераторов ацетилена являются относительно большие размеры и повышенный расход воды. Наиболее часто такие приборы применяются в качестве стационарных газосварочных установок.

Принцип работы ацетиленового генератора «вода в карбид»

Генераторы, в которых для образования ацетилена подаётся вода в ёмкость с сухим реагентом могут быть 2 видов:

  • Работающие по принципу «мокрого процесса».
  • Работающие по принципу «сухого процесса».

Первый тип генераторов состоит из ёмкости, в которой находится карбид. Для получения газа в резервуар периодически подаётся вода небольшими порциями. Управление этим процессом осуществляется в полностью автоматическом режиме. Конструкция установок мокрого процесса образования ацетилена изготовлена таким образом, что при падении давления, уровень жидкости поднимается и подаётся в камеру с карбидом.

Генераторы, работающие по такому принципу имеют очень компактные размеры, надёжны в эксплуатации и легко обслуживаемы. Основным недостатком такой конструкции является невозможность изготовления промышленного образца. Максимальная производительность установки, в которой вода подаётся в карбид по принципу мокрого процесса, не превышается 10 М3.

В генераторах, где для получения ацетилена подаётся вода на карбид, может применяться «сухой» принцип работы. Особенностью таких установок является наличие внутреннего барабана с приводом. В эту ёмкость подаётся карбид кальция, который периодически орошается водой. Этот метод называется «сухим» по причине образования сухой извести после реакции. Получение сухого остатка обусловлено наличием высокой температуры в генераторе. Благодаря полному отсутствию жидкой воды во внутренней полости, производительность генератора этого типа является более высокой за счёт отсутствия растворения ацетилена. Генераторы этого типа используются, как правило, в стационарных установках средней мощности.

Ацетиленовые генераторы, работающие по принципу «вытеснение воды»

Установки этого типа состоят из двух сообщающихся резервуаров. В одной ёмкости происходит химическая реакция, в другой находится вода, вытесняемая из рабочей камеры. Карбид подаётся в специальной решётке, расположенной в верхней части центрального резервуара. После того как решётка погружается незначительно в воду, происходит бурная реакция с выделением газа. Образовавшийся газ давит на жидкость в первичной камере и вытесняет её во второй резервуар, таким образом снижая её уровень и оголяя часть решётки с карбидом. Когда давление падает, в результате использования газа из резервуара, уровень воды снова повышается и химическая реакция по выделению ацетилена возобновляется.

Основным преимуществом этого способа генерации газа является плавность работы и высокая надёжность. Недостатками системы производства ацетилена с вытеснением воды являются чрезмерный нагрев корпуса генератора и невозможность обслуживания устройств промышленного назначения. По этим причинам применение установок с вытеснением воды ограниченно только использованием в мобильных приборах.

Принцип работы комбинированных ацетиленовых генераторов

Комбинированные установки по производству ацетилена сочетают в себе принцип работы генератора «вода на карбид» и «вытеснение воды». Принцип работы такого устройства следующий:

  • В газовой камере размещается корзина с карбидом.
  • На карбид дозировано подаётся вода из бака.
  • При образовании давления внутри камеры, вода из неё вытесняется.
  • Газ удаляется через отборник.

При падении давления вышеописанная последовательность повторяется до полного расходования загруженного в рабочий отсек карбида.

Достоинством этого метода получения горючего газа, является очень плавная работа прибора. Применяются комбинированные генераторы преимущественно в передвижных установках.

Требования по безопасной эксплуатации ацетиленовых генераторов

При реакции карбида кальция выделяется взрывоопасный газ, а процесс разложения СаС2 сопровождается выделением большого количества температуры. Чтобы снизить вероятность возникновения чрезвычайных ситуаций на производственных объектах и во время выполнения различных работ, рекомендуется придерживаться следующих правил эксплуатации ацетиленовых генераторов:

  • Работать при температуре в диапазоне от -25 до +40 градусов Цельсия.
  • Вне зависимости от конструкции генератора следует обеспечить полную герметичность рабочего резервуара и целостность шлангов или труб подключаемых к газовому отборнику.
  • Мобильные установки необходимо эксплуатировать только в вертикальном положении.
  • Передвижные генераторы разрешается перевозить только в разряженном состоянии.
  • При очистке внутренних стенок рабочей ёмкости запрещается использовать материалы, которые при ударе могут искрить.
  • Производить работы с ацетиленом без использования водяного затвора категорически запрещено.
  • При замерзании прибора в зимнее время нельзя отогревать его с помощью открытого огня. Для этой цели следует использовать только горячую воду.
  • Работы с открытым огнём должны производиться не ближе 10 метров от генератора.
  • Карбид кальция следует использовать только такой грануляции, которая разрешена заводом-изготовителем данной установки.

Если придерживаться этих рекомендаций, то работа газового генератора будет безопасной и максимально эффективной.

Асинхронные генераторы, назначение, особенности, принцип работы

Трехфазные асинхронные машины как генераторы используются значительно реже, чем синхронные, так как имеют худшие экс-плуатационные характеристики. частота ЭДС асинхронных генераторов переменная (зависит от нагрузки), они имеют низкий коэф-фициент мощности и загружают сеть реактивным током. Кроме того, напряжение асинхронного генератора можно регулировать лишь изменением частоты вращения, что также влияет на частоту тока.

Как и все электрические машины общепромышленного применения, асинхронная машина обратима, т. е. может работать как в режиме двигателя, так и в режиме генератора.

Если S пх). Электромагнитная сила (электромагнитный момент) противодействует вращению ротора. Для обеспечения работы генератора необходимо передавать ротору мощность от внешнего источника энергии.
Асинхронные генераторы используют на транспорте (кораблях, самолетах, тепловозах и др.). Они генерируют ЭДС неустановив-шейся частоты, однако имеют надежную конструкцию и работают со скоростными двигателями, имеющими частоту вращения до 12 000 об/мин. Такие энергетические установки обладают хорошими массово-габаритными характеристиками.

При автономной работе асинхронные генераторы потребляют индуктивную мощность. Для компенсации параллельно к обмоткам статора включают конденсаторы.
Достаточно интересно использование асинхронных двигателей в генераторном режиме. Его используют для ограничения скорости вращения вала. Когда исполнительный механизм ускоряет движение, то переводом двигателя в режим генератора можно осуществить рекуперативное торможение, т. е. работу с возвращением энергии в сеть. Такой режим обеспечивается, например, при движении железнодорожного состава под уклон. Опытный машинист башенного крана может таким образом экономить достаточно большое количество электроэнергии, опуская грузы на стройплощадке.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты