Выбор автомата для асинхронного двигателя
Выбор автоматических выключателей для электродвигателей
Выбирая автоматические выключатели для защиты двигателей, мы должны учитывать, что при пуске электродвигателя, возникает пусковой ток, превышающий в 5 — 7 раз номинального значения.
Автоматические выключатели выбираются по условиям:
- Uном. – номинальное напряжение, В;
- Uном.сети – номинальное напряжение сети, В.
- Iном.расц. – номинальный ток расцепителя выключателя, А;
- Iном.дв. – номинальный ток электродвигателя, А.
Ток уставки электромагнитного и полупроводникового расцепителя выбирается по формуле [Л1,с. 106]:
Для приближенного расчета тока уставки электромагнитного и полупроводникового расцепителя, можно принять по таблице 6.1 [Л1,с. 107].
Таблица 6.1 – Значения коэффициентов для расчета тока срабатывания отсечки автоматических выключателей, устанавливаемых в цепях электродвигателей
Автоматический выключателиь | Расцепитель | kз | kа | kр | kн | ||
---|---|---|---|---|---|---|---|
А3700; А3790 | Полупроводниковый | РП | 1,1 | 1,0 | 1,3 | 1,5 | |
ВА | БПР | ||||||
«Электрон» | РМТ | 1,35 | 1,6 | ||||
МТЗ-1 | 1,4 | 2,2 | |||||
АВМ | Электромагнитный | 1,4 | 1,1 | 1,8 | |||
А3110; АП-50; А3700; ВА; АЕ20 | 1,3 | 2,1 | |||||
А3120; А3130; А3140 | 1,15 | 1,9 |
Надежность срабатывания автомата при двухфазном и однофазном коротком замыкании при КЗ на выводах электродвигателя определяется коэффициентом чувствительности и рассчитывается по формуле [Л1,с. 107]:
При отсутствии значений по коэффициенту разбросу kp, рекомендуется принимать коэффициент чувствительности в пределах 1,4-1,5.
В случае если чувствительности защиты от междуфазных КЗ недостаточно, следует принять следующие меры:
- уточнить значение Iс.о с учетом влияния сопротивления внешней сети на пусковой ток электродвигателя;
- выбрать другой тип АВ;
- увеличить сечение кабеля на одну, две ступени, но не больше;
- применить выносную релейную защиту.
При недостаточной чувствительности защиты от однофазных КЗ, следует принять следующие меры:
- применить кабель другой конструкции с нулевой жилой, алюминиевой оболочкой;
- проложить дополнительные зануляющие металлические связи;
- применить АВ со встроенной защитой от однофазных КЗ;
- применить выносную релейную защиту от однофазных КЗ, ток срабатывания данной защиты принимается 0,5-1*Iном.дв. Коэффициент чувствительности kч > 1,5, согласно ПУЭ 7-издание;
Выбор тока срабатывания для теплового и электромагнитного (комбинированного) расцепителя автоматического выключателя
Для того, чтобы защитить двигатель от перегрузки, то есть от повреждений, вызываемых длительным протеканием тока превышающего номинальный, нужно использовать тепловые и электромагнитные (комбинированные) расцепители. Номинальный ток теплового расцепителя определяется по формуле [Л1. с 109]:
Данные коэффициенты определяются для разных типов выключателя по таблице 6.2 [Л1. с 112].
Таблица 6.2 – Значения коэффициентов для расчета тока срабатывания защиты от перегрузки автоматических выключателей
Автоматический выключателиь | Расцепитель | kз | kр | kн = kз*kр | kв | |
---|---|---|---|---|---|---|
А3700; АЕ20 | Тепловой | — | — | 1,15 | 1 | |
А3110; АП50 | 1,25 | 1 | ||||
ВА51; ВА52 | 1,2-1,35 | 1 | ||||
АВМ | Электромагнитный | 1,1 | 1,1 | 1,2 | 0,5-0,7 | |
А3700 | Полупроводни- ковый | РП | 1,1 | 1,15-1,2 | 1,27-1,32 | 0,97-0,98 |
«Электрон» | МТЗ-1, РМТ | 1,1 | 1,15-1,35 | 1,27-1,49 | 0,75 | |
ВА | БПР | 1,1 | 1,08-1,2 | 1,19-1,32 | 0,97-0,98 |
Общая формула по определению тока теплового расцепителя, имеет следующий вид:
Время срабатывания защиты от перегрузки выбирается из условия, что защита не будет срабатывать при пуске и самозапуске двигателя [Л1. с 112]:
Продолжительность пуска для двигателей с тяжёлыми условиями пуска, составляет более 5 – 10 сек, например для двигателей центрифуг, дробилок, шаровых мельниц и т.д и для двигателей с лёгкими условиями пуска равным 0,5 – 2 с, например для двигателей вентиляторов, насосов, главных приводов металлорежущих станков и механизмов с аналогичным режимом работы.
Проверка чувствительности при однофазных КЗ
Данную проверку нужно выполнять, если для отключения однофазных КЗ используется защита от перегрузки. В настоящее время ПУЭ 7-издание п. 1.7.79 предъявляет требования, чтобы время отключение выключателя тока однофазного КЗ не превышало 0,4 с.
1. Беляев А.В. Выбор аппаратуры, защит и кабелей в сети 0,4 кВ. Учебное пособие. 2008 г.
Как правильно подобрать автоматический включатель для электродвигателя и другого электротехнического оборудования.
Способ №1.
Для того что бы определить номинал автомата, необходимо знать суммарную мощность приборов, которые будут через него подключаться. Т.е. примерно прикидываем. что мы будем включать, например, в розетки (электрочайник , холодильник , телевизор и т.д.) складываем мощность этих приборов и исходя из этого вычисляем рабочий ток розеточной группы, используя следующую формулу: при однофазной нагрузке на 1 кВт мощности приходится ток, равный 5А . При трехфазной нагрузке на 1 кВт приходится ток, равный 3А . Допустим, у нас получилось 3,6 кВт , умножаем на 5. Получается 18А — это рабочий ток. Номинальный то автомата должен быть больше рабочего — выбираем автомат на 25А. Таким же образом рассчитываем номинал автомата для подключения, например, трехфазного электродвигателя мощностью 4 кВт: 4 умножаем на 3 получаем 12А -рабочий ток, выбираем автомат на 16А . При выборе автоматов для защиты асинхронных трехфазных электродвигателей необходимо учитывать, что пусковой ток электродвигателя в 5-7 раз больше номинального. Поэтому выбирать автомат по номиналу нельзя , т.к. при запуске его будет постоянно выбивать. Для асинхронных электродвигателей с коротко-замкнутым ротором при небольшой частоте включения и легких условиях пуска (время пуска 5-10 секунд) номинальный ток автомата должен быть не менее 0,4 пускового тока электродвигателя. При тяжёлых условиях работы (частые запуски, продолжительность разбега до 40 секунд) соотношение рекомендуется увеличить с 0,4 до 0,6.
Способ №2.
Первое, что мы должны сделать, так это посмотреть паспорта электроприборов, включаемых в одну сеть и выяснить мощности каждого. К примеру, чайник 2 кВт, лампа 100 Вт, холодильник 600 Вт, стиральная машина 2,2 кВт. Подключать мы будем к одной фазе одним кабелем. То есть на конце 3 розетки и один выключатель. Значит, мощность на кабель ляжет суммарная 2 кВт + 100 Вт + 600 Вт + 2,2 кВт. Чтобы не путаться, давайте перейдем к ваттам. 2000 Вт + 100 Вт + 600 Вт + 2200 Вт (кВт — это киловатты, то есть тысячи ватт. Поэтому кВт умножаем на 1000). В итоге мы получаем 4900 Вт. Еще раз повторимся, это суммарная мощность всех приборов, приходящаяся на один кабель. Теперь нам надо просто узнать ток. Берем формулу и подставляем значения. W=U*I отсюда I=W/U I=4900/220 I=22,27A. А здесь вы меня остановите и скажите: «А ведь у стиральной машины и холодильника есть моторы. Как же с реактивным сопротивлением?» И будите правы, но при хорошем заземлении и хорошем нуле для однофазных моторов про реактивные сопротивления можно забыть. Вроде все хорошо, да не все. Опять моторы портят все. Если нагревательные приборы всегда потребляют ток один и тот же, то моторы имеют, так называемый пусковой ток. И он при старте очень большой. Для этих целей производители автоматов предусмотрели такую вещь, как уставка по току. Вот и все.
Что такое уставка по току? Спросите вы. А вот что. Все автоматы делятся на три группы. B C D. Эти группы делят так: B от 3 до 5, C от 5 до 10, D от 10 до 14. Что эти цифры означают. В автомате есть токовый расцепитель. Он срабатывает, когда ток превышает заданный предел. Так вот чтобы при старте мотора автомат не выбивал, существует уставка по току. Это то что держит автомат несколько секунд при старте мотора. А цифра означает всего-навсего коэффициент. То есть если ток при старте превысит номинальный в 4 раза, то автомат нам нужен группы В. А если в 10 раз, то D. Для стиральных машин и холодильников подойдет группа C. И для нашего примера нам нужен автомат на 25А и группа С. Маркировка будет такой С25
Как правильно подобрать автоматический включатель для электродвигателя и другого электротехнического оборудования, учитывая сечение токопроводящего кабеля.
При подборе автоматической защиты для электродвигателя, необходимо так же учитывать сечение токопроводящего кабеля, чтобы избежать плавления или возгорания электрической проводки.
Здесь имеет значение материал провода, количество жил кабеля, и то, как он уложен, открыто, в стену и т.д.
Допустим, у нас двухжильный медный провод с сечением 4 мм.кв. уложенный в стену, смотрим по первой таблице максимально допустимую силу тока, она равна 32 А. Но при выборе автоматического выключателя эту силу тока нужно уменьшать до ближайшего нижнего значения, для того чтобы провод не работал на пределе. Получается, что нам нужен автомат на 25 А.
Так же нужно помнить, если нужен автомат на розеточную группу, то брать выше 16 А нет смысла, так как розетки больше 16 А выдержать не могут, они просто начинают гореть. На освещение самый оптимальный автомат на 10 А.
Допустимый длительный ток для проводов и кабелей с медными жилами
Выбор автоматов для электродвигателей 0,4 кВ
В электроустановках напряжением 0,4 кВ основными защитами оборудования и линий от всех видов повреждений являются токовая отсечка (ТО) и максимальная токовая защита (МТЗ). ТО защищает сети от токов коротких замыканий (КЗ), срабатывание такой защиты выполняется без выдержки времени, а пороговое значение тока срабатывания находится в пределах 10-12 Iн.
МТЗ иначе называется защитой от перегрузок и не допускает перегрева обмоток оборудования и линий, вследствие протекания недопустимого тока нагрузки. Выдержка времени задается в зависимости от величины перегруза.
Защиту электродвигателей (как и большинство других электроприемников) от коротких замыканий и токовых перегрузок выполняют с помощью автоматических выключателей. Наиболее распространенные отечественные серии автоматов: А3100, А3700, ВА, АЕ, “Электрон”, “АВМ”.
Защитные характеристики автоматов. При выборе выключателей очень важную роль играет его защитная характеристика, зависящая от типа расцепителя и определяющая время его срабатывания. Автоматы различаются по следующим защитным характеристикам:
· с независимой характеристикой отключения — имеют электродинамический или полупроводниковый расцепитель, работающий в зоне токов КЗ без выдержки времени; · с зависимой защитной характеристикой. Выполняются только с тепловым расцепителем в виде биметаллических пластин. Чем больше ток, тем меньше времени затрачивается на нагрев биметалла, и соответственно, быстрей отключается расцепитель. Аппараты, имеющие такую характеристику, используются редко, из-за ограниченных возможностей защиты. · ограниченно-зависимая защитная характеристика автоматов — подразумевает использование комбинированного типа расцепителя. При небольших уровнях токов КЗ работает тепловой расцепитель, при значительно больших токах — электродинамический. У выключателей серии АВМ электродинамический расцепитель имеет две ступени срабатывания, поэтому тепловой не применяется. Ограниченно-зависимой характеристики добиваются также применением полупроводниковых расцепителей. · трехступенчатая защитная характеристика — выполняется на базе полупроводниковых расцепителей типа РМТ, БПР, РП. Такими расцепителями оборудуются выключатели серии А3700, ВА, “Электрон”.
Особенность выбора уставок токовой отсечки двигателей состоит в отстройке защиты от пусковых токов. Так, запуск или самозапуск асинхронных электродвигателей может сопровождаться возрастанием тока в 6-7 раз. Кроме того, пусковой ток содержит периодическую и апериодическую составляющие.
Следует учитывать, что выключатели серии А3100, А3700, ВА, АП-50 и АЕ-20 не имеющие полупроводниковых расцепителей, реагируют на апериодическую составляющую и могут производить ложные срабатывания. Массивный якорь АВМ также может срабатывать при кратковременном броске апериодического тока, что приводит к ложному отключению.
Отстройка автоматов от пусковых токов определяется выражением:
Iо — ток срабатывания отсечки; Iпуск — пусковой ток, каталожное значение; kн — коэффициент надежности отстройки отсеки от пусковых токов: для выключателей с полупроводниковым расцепителем равен 1,5-2,2, для электромагнитного расцепителя 1,8-2,1.
Коэффициент чувствительности для токовой отсечки, при однофазных и двухфазных КЗ должен находиться в пределах:
I(2)кR и I(1)кR — соответственно, минимальный ток двух- и однофазного замыкания на зажимах двигателя. Приближенно 1,1kp принимают равным 1,4-1,5.
Выбор уставки МТЗ определяется выражением:
kв — коэффициент возврата, характеризующий значение тока, при котором защита переходит в несработанное состояние.
Защита считается выбранной верно если:
Ограниченно зависимые защитные характеристики выключателей А3134, А3144, АВМ и “Электрон” не позволяют выбрать ток уставки МТЗ удовлетворяющий вышеприведенному выражению, поэтому их применяют как резервные защиты от перегруза, основную функцию защиты от перегруза в этом случае выполняют тепловые реле.
Наиболее подходящими автоматами для защит электродвигателей от перегруза являются автоматы серии А3700 и ВА, оснащенные полупроводниковыми расцепителями. Время срабатывания МТЗ подбирается таким образом, чтобы не произошло излишнего отключения цепи, при пуске или самозапуске двигателя:
Легким считается пуск двигателя длительностью 0,5-2 сек, тяжелым пуском называется процесс длительностью 5-10 сек. Автоматические выключателя типа А3700, ВА, “Электрон” с полупроводниковыми расцепителями позволяют регулировать время срабатывания МТЗ.
Мотор-автоматы. Зарубежные производители для защиты электродвигателей от ненормальных режимов предлагают специальные мотор-автоматы, которые могут работать автономно и в блоке с магнитным пускателем. Выполняя функции защиты электрических машин, такие автоматы имеют ряд отличий от простых отечественных аппаратов:
· выпускаются только в трехфазном исполнении; · имеют повышенную элктродинамическую стойкость, до 100 кА; · тепловой расцепитель позволяет выполнить точную подстройку под каждый двигатель; · номинальный ток электромагнитного расцепителя 12-14 Iн, что позволяет настроить защиту, с учетом пусковых токов двигателей; — модульная конструкция автоматов позволяет расширять функции защиты, применяя дополнительные блоки.
Наиболее широкое применение, мотор-автоматы получили в приводах с двигателями мощностью до 12,5 кВт при напряжении 380В. Изделия концерна АВВ типа MS225 с номинальным током 25 А, регулируемым расцепителем от 0,1 до 25А имеют электродинамическую стойкость 50 кА.
MS116 — мотор-автоматы открытого типа не имеющие дополнительного оборудования, номинальный ток 16А, электродинамическая стойкость 10 кА. MS450 и MS495 аналогичны MS225 но рассчитаны на ток до 100 А.
Мотор-автоматы компании «SCHNEIDER ELECTRIC» марки GV оснащены термомагнитным расцепителем. Магнитный расцепитель имеет фиксированную уставку 13 Iн, служит для защиты от КЗ. Тепловой расцепитель может быть отрегулирован с помощью специальных дисков, расположенных на лицевой поверхности аппарата, также имеется устройство компенсации температуры окружающей среды.
Аппараты этой марки могут быть укомплектованы расцепителями минимального напряжения. Такое устройство позволяет предупредить несанкционированный самозапуск оборудования, после посадки напряжения. Мотор-автоматы марки GV рассчитаны на токи от 1,5 до 22,5 А.
Выбор автомата для асинхронного двигателя
Автоматический выключатель (АВ) выбирают по номинальному току I н.вык выключателя и номинальному току I н.расц расцепителя.
I расц =I дл /К т , где
I дл =I н.дв – длительный ток в линии,
I н.дв – номинальный ток двигателя,
К т – тепловой коэффициент, учитывающий условия установки АВ.
К т =1 — для установки в открытом исполнении;
К т =0,85 – для установки в закрытых шкафах.
Iдл=Iн= Р н /(Uн·√3·ηн·cosφ), (1)
гдеРн — мощность двигателя, кВт;
Uн – номинальное напряжение электродвигателя, кВ;
ηн – КПД двигателя (без процентов),
cosφ – коэффициент мощности двигателя.
Номинальный ток асинхронного двигателя с к. з. ротором будет примерно равен его удвоенной мощности, взятой в киловаттах:
Iн≈ 2Рн(кВт)
Выбираем АВ:
Тип –
Iн.вык –
Iрасц –
Необходимо, чтобы выполнялось условие:
Iмгн.ср ≥ KIкр, где
Iмгн.ср — ток мгновенного срабатывания,
Iкр – максимальный кратковременный ток,
К – коэффициент, учитывающий неточность определения Iкр в линии.
К = 1,25 – для АВ с Iн > 100А;
К = 1,4 – для АВ с Iн ≤ 100А.
Iкр = Iпуск = Кi Iн, где
Кi – кратность пускового момента Кi = Iпуск/Iн.
Значения Кi берутся из таблиц.
Если условие выполняется, значит АВ выбран верно, если не выполняется, то выбирается АВ с большим значением тока расцепителя.
Приведем пример .
Условие установки АВ:
По типу двигателя выписываем из таблицы его номинальные данные:
Так как автомат устанавливается в шкафу, то Кт = 0,85, поэтому:
По току расцепителя выбираем автомат: ВА 51-25; Iн = 25 А Iрасц = 16 А;
Iмгн.ср = 10∙Iрасц = 10∙16 = 160 А
Неравенство выполняется, значит автомат выбран верно.
Выбор автомата для асинхронного двигателя
На замену плавким предохранителям еще два столетия назад пришли автоматические выключатели. С 1924 года патент на это изобретение принадлежит швейцарской компании Brown , Boveri & Cie .
Преимущества АВ над плавкими вставками:
— плавкий предохранитель выходит из строя после первого своего срабатывания, то есть многократное его использование невозможно, необходима замена сгоревшей плавкой части;
— при использовании в трехфазной цепи, короткое замыкание в одной фазе вызовет перегорание одного предохранителя, в то время как две другие фазы будут продолжать работать. Аварийный режим работы (обрыв фазы) исключается АВ, так как к.з. в одной фазе трехполюсного выключателя приводит к разрыву всей цепи.
Автоматический выключатель (АВ) – это электромеханический коммутационный аппарат, который позволяет включать и отключать питание потребителя при нормальном режиме работы. А так же обеспечивает защиту электрооборудования от токов короткого замыкания и перегрузки (перегревания). Частое отключения в ручном режиме нежелательно, так как АВ имеют заявленное число коммутаций (для этого лучше использовать более дешевые рубильники).
Для того чтобы правильно выбрать автоматический выключатель, необходимо понимать его основные параметры и характеристики:
Номинальный ток автомата ( I н ) – величина тока, на которую АВ рассчитан для длительной нормальной работы. Иногда показатель I н имеет определенный диапазон и регулятор для точной настройки. Например, I н =3 ÷ 5А, это означает, что данный автоматический выключатель можно подстроить на рабочие токи от 3 до 5 А. При превышении указанного значения происходит срабатывание защиты и электрическая цепь разрывается. По нормам, срабатывание должно произойти при силе тока в 1,45 I н .
Тип автоматического выключателя определяет кратковременное значение силы тока, при котором произойдет разрыв цепи. Тип или класс, в основном, определяется для момента включения. При запуске электрооборудования имеют место пусковые токи, которые могут быть огромными. Например, при прямом пуске электродвигателя, начальный ток равен 10-ти номинальным. Основные типы:
— B (кратковременное увеличение тока в 3-5 раз от номинального); |
— C (5-10 раз); |
— D (10-50 раз). |
Время срабатывания (от момента, когда контролируемый параметр стал больше предельного значения, до момента размыкания контактов). АВ по времени срабатывания делятся на:
— нормальные (t=0,02-0,1с); |
— быстродействующие (0,005с); |
— селективные (предел регулирования времени срабатывания до 1с) |
Последние имеют контакты с задержкой на размыкание. Применяются в сложных цепях, селективный АВ устанавливают на входе потребителя большой мощности. После него на разветвлениях цепи стоят автоматы меньшей мощности. Таким образом, при создании аварийной ситуации на участке цепи – выключится лишь отдельное оборудование, а селективность позволит остальной системе остаться работоспособной.
Отключающая способность – это максимальный ток, который может присутствовать кратковременно в цепи, чтобы автоматический выключатель не потерял свою работоспособность (возможно сваривание контактов при превышающих норму токах). Это значение обычно в сотню раз больше рабочего тока. А возникает такой огромный ток при коротком замыкании.
Механизмы расцепления
Тепловая отсечка (длительное влияние тока, превышающего норму) выполняется благодаря пластине, которая состоит из двух разных металлов. У используемых металлов разная тепловая проводимость. Пластина подсоединена последовательно, то есть через нее протекает ток цепи. Когда значение тока номинальное или меньше – автомат остается в замкнутом состоянии. Если же ток превысит нормированное значение, пусть даже на 10% в течении длительного времени, пластина нагреется и изогнется, тем самым, разорвет контакт питающей цепи.
Электромагнитное расцепление обеспечивает защиту от больших, резких скачков тока. Эта отсечка выполняется встроенным соленоидом. К примеру, автоматический выключатель рассчитан на ток в 2 А, его тип В, следовательно сработать он должен при токе 10 А. Для этого и служит соленоид. При токах до 10А, он будет неподвижным, а при достижении 10А, соленоид втянется и разомкнет контакт – произойдет выключение автомата.
Строение
На рисунке ниже показаны основные элементы, из которых состоит автоматический выключатель.
1 – соленоид выполняет функцию расцепления при коротком замыкании; |
2 – зажимной винтовой контакт для подсоединения провода; |
3 – дугогасительная камера рассеивает дугу, которая возникает в следствии коммутации (соединение/разъединение) контактов; |
4 – подвижный контакт; |
5 – биметаллическая пластина для защиты от перегрузки (длительного повышенного тока). |
Функции независимого расцепления (НР), расцепление по нулевому напряжению (НРН) и по минимальному напряжению (МРН) выступают дополнительными, и не включаются в стандартные комплекты поставки (необходимо заказывать сборочные единицы).
Выше показано одно из многочисленных исполнений АВ. Существует широкое их разнообразие. Например, по роду тока, количеству подключаемых фаз, расположению клемм. Но это все конструктив, а мы описываем как это работает.
Обозначение автоматического выключателя на электрической схеме:
Онлайн расчет автоматического выключателя
Выбор по току . Если Вы хотите в квартире, гараже, на даче поставить АВ. Следовательно, проводка уже проложена и ее сечение Вам известно, тогда нужно обратиться к таблице, где указаны сечения проводов и соответствующие для них максимальные токи. Прочесть подробнее о выборе сечения проводника будет полезным для установки автомата.
Например, у меня дома в стенах проложен алюминиевый провод сечением 2,5 мм 2 .
Для открыто проложенного алюминиевого кабеля сечением 2,5мм 2 максимальный ток – 24А. Но, так как он проложен скрытно, его охлаждение будет хуже, чем на открытом воздухе. Для этого выбранное значение умножаем на поправочный коэффициент для скрытой прокладки 0,8.
Максимальный ток, который выдержит проводка:
![]() |
Автомат предназначен, чтоб обеспечить защиту не только электроприборов, но и для сохранения целостности проводника. Ведь, согласитесь, искать внутри стен, где перегорела проводка – не самое веселое занятие. Потому нужно выбрать автоматический выключатель с номинальным током, ниже, чем у провода. Из стандартного ряда, автомат на 16А будет подходящим и сохранит целостность проводов и приборов.
Выбор по мощности . Если нам необходимо подключить несколько потребителей электроэнергии, и мы знаем лишь их мощность. Две лампочки накаливания на 100Вт и один асинхронный электродвигатель на 2кВт. Напряжение сети – переменное 220В.
Для лампочек накаливания подсчет будет прост, из формулы активной мощности Р= UI , выразим и найдем значение тока:
![]() |
А вот с электродвигателем существует нюанс. Так как он является не только активной, но и реактивной нагрузкой, косинус фи вносит изменение в наш расчет. Коэффициент мощности указывается на шилдике (табличке) двигателя, но если такой отсутствует, смело принимайте значение 0,7. Итак, ток через двигатель будет равен:
![]() |
Выбор автоматического выключателя будет по сумме этих токов (14А), но с небольшим запасом. Выбираем , снова таки, 16 амперный автомат.
Для трехфазной сети, выбор автоматического выключателя по мощности осуществляется по формуле:
Автоматический выключатель для защиты электродвигателя — как правильно подобрать?
При подборе автоматических выключателей, способных защитить электрические моторы от повреждения в результате КЗ или чрезмерно высоких нагрузок, необходимо учитывать большую величину пускового тока, нередко превышающую номинал в 5-7 раз. Наиболее мощным стартовым перегрузкам подвержены асинхронные силовые агрегаты, обладающие короткозамкнутым ротором. Поскольку это оборудование широко применяется для работы в производственных и бытовых условиях, то вопрос защиты как самого устройства, так и питающего кабеля очень актуален. В этой статье речь пойдет о том, как правильно рассчитать и выбрать автомат защиты электродвигателя.
Задачи устройств для защиты электродвигателей
Бытовую электротехнику от пусковых токов большой величины в сетях обычно защищают с помощью трехфазных автоматических выключателей, срабатывающих через некоторое время после того, как величина тока превысит номинальную. Таким образом, вал мотора успевает раскрутиться до нужной скорости вращения, после чего сила потока электронов снижается. Но защитные устройства, используемые в быту, не имеют точной настройки. Поэтому выбор автоматического выключателя, позволяющего защитить асинхронный двигатель от перегрузок и сверхтоков короткого замыкания, более сложен.
Современные автоматы для защиты двигателя нередко устанавливаются в общем корпусе с пускателями (так называются коммутационные устройства запуска мотора). Они предназначены для выполнения следующих задач:
- Защита устройства от сверхтока, возникшего внутри мотора или в цепи подачи электропитания.
- Предохранение силового агрегата от обрыва фазного проводника, а также дисбаланса фаз.
- Обеспечение временной выдержки, которая необходима для того, чтобы мотор, вынужденно остановившийся в результате перегрева, успел охладиться.
Управляющая и защитная автоматика для двигателя на видео:
- Отключение установки, если нагрузка перестала подаваться на вал.
- Защита силового агрегата от долгих перегрузок.
- Защита электромотора от перегрева (для выполнения этой функции внутри установки или на ее корпусе монтируются дополнительные температурные датчики).
- Индикация рабочих режимов, а также оповещение об аварийных состояниях.
Необходимо также учитывать, что автомат для защиты электродвигателя должен быть совместим с контрольными и управляющими механизмами.
Расчет автомата для электродвигателя
Еще недавно для защиты электрических моторов использовалась следующая схема: внутри пускателя устанавливался тепловой регулятор, подключенный последовательно с контактором. Этот механизм работал таким образом. Когда через реле в течение длительного времени проходил ток большой величины, происходил нагрев установленной в нем биметаллической пластины, которая, изгибаясь, прерывала контакторную цепь. Если превышение установленной нагрузки было кратковременным (как бывает при запуске двигателя), пластинка не успевала нагреться и вызвать срабатывание автомата.
Внутреннее устройство автомата защиты двигателя на видео:
Главным минусом такой схемы было то, что она не спасала агрегат от скачков напряжения, а также дисбаланса фаз. Сейчас защита электрических силовых установок обеспечивается более точными и современными устройствами, о которых мы поговорим чуть позже. А теперь перейдем к вопросу о том, как производится расчет автомата, который нужно установить в цепь электромотора.
Чтобы подобрать защитный автоматический выключатель для электроустановки, необходимо знать его времятоковую характеристику, а также категорию. Времятоковая характеристика от номинального тока, на который рассчитан АВ, не зависит.
Чтобы автоматический выключатель не срабатывал каждый раз при запуске мотора, величина пускового тока не должна быть больше той, которая вызывает моментальное срабатывание аппарата (отсечка). Соотношение тока запуска и номинала прописывается в паспорте оборудования, максимально допустимое – 7/1.
Производя расчет автомата практически, следует использовать коэффициент надежности, обозначаемый символом Kн. Если номинальный ток устройства не превышает 100А, то величина Kн составляет 1,4; для больших значений она равна 1,25. Исходя из этого, значение тока отсечки определяется по формуле Iотс ≥ Kн х Iпуск. Автоматический выключатель выбираем в соответствии с рассчитанными параметрами.
Еще одна величина, которую необходимо учитывать при подборе, когда автомат монтируется в электрощитке или специальном шкафу – температурный коэффициент (Кт). Это значение составляет 0,85, и номинальный ток защитного устройства при подборе следует умножать на него (In/Кт).
Современные устройства электрозащиты силовых агрегатов
Большой популярностью пользуются модульные мотор-автоматы, представляющие собой универсальные устройства, которые успешно справляются со всеми функциями, описанными выше.
Кроме этого, с их помощью можно производить регулировку параметров отключения с высокой точностью.
Современные мотор-автоматы представлены множеством разновидностей, отличающихся друг от друга по внешнему виду, характеристикам и способу управления. Как и при подборе обычного аппарата, нужно знать величину пускового, а также номинального тока. Кроме этого, надо определиться, какие функции должно выполнять защитное устройство. Произведя нужные расчеты, можно покупать мотор-автомат. Цена этих устройств напрямую зависит от их возможностей и мощности электрического мотора.
Особенности защиты электрических двигателей в производственных условиях
Нередко при включении устройств, мощность которых превышает 100 кВт, напряжение в общей сети падает ниже минимального. При этом отключения рабочих силовых агрегатов не происходит, но количество их оборотов снижается. Когда напряжение восстанавливается до нормального уровня, мотор начинает заново набирать обороты. При этом его работа происходит в режиме перегрузки. Это называется самозапуском.
Самозапуск иногда становится причиной ложного срабатывания АВ. Это может произойти, когда до временного падения напряжения установка в течение длительного времени работала в обычном режиме, и биметаллическая пластина успела прогреться. В этом случае тепловой расцепитель иногда срабатывает раньше, чем напряжение нормализуется. Пример падения напряжения в электросети автомобиля на следующем видео:
Чтобы предотвратить отключение мощных заводских электромоторов при самозапуске, используется релейная защита, при которой в общую сеть включаются токовые трансформаторы. К их вторичным обмоткам подключаются защитные реле. Эти системы подбираются методом сложных расчетов. Приводить здесь мы их не будем, поскольку на производстве эту задачу выполняют штатные энергетики.
Заключение
В этом материале мы подробно осветили тему защитных устройств для электрических двигателей, и разобрались с тем, как подобрать автомат для электромотора и какие параметры при этом должны быть учтены. Наши читатели могли убедиться, что расчеты, которые производятся при этом, совсем несложны, а значит, подобрать аппарат для сети, в которую включен не слишком мощный силовой агрегат, вполне можно самостоятельно.
САМ себе МАСТЕР
Как подобрать автоматический выключатель для двигателя
- Как выбрать
- Электромонтажные работы
Правильный подбор автоматического выключателя для защити электродвигателя имеет огромное значение для оборудования. Надежность работы, защита двигателя от аварийных режимов работы и проводки напрямую зависит от подбора автоматического выключателя.
В этой статье наведем условия выбора автоматического выключателя для защиты электродвигателя. Для того чтобы выбрать автоматический выключатель необходимо знать:
— номинальный ток двигателя;
— кратность пускового тока к номинальному;
— максимально допустимый ток электропроводки.
Номинальный ток двигателя – это ток который имеет электродвигатель во время работы при номинальной мощности. Он указывается на паспорте электродвигателе или берется с таблиц паспортных данных электродвигателей.
Кратность пускового тока к номинальному – это соотношение пускового ток который возникает в электродвигателе во время пуска к номинальному. Он тоже указывается на паспорте электродвигателя или в таблицах электродвигателей.
Максимально допустимый ток электропроводки – это допустимый ток, который может проходить по проводу, кабеля, что подключен к электродвигателю.
Условия для правильного выбора автоматического выключателя для защиты электродвигателя:
— номинальный ток автоматического выключателя должен бить больше или равен номинальному току электродвигателя. Например: ток электродвигателя АИР112М4У2 Ін. дв. =11,4А выбираем автоматический выключатель ВА51Г2534 на номинальный ток Ін. = 25А и ток расцепителя Ін..рас. = 12.5А.
После этого проверим автоматический выключатель на не срабатывания при пуске электродвигателя используя условие :
Iу.е.>kзап. · kр.у ·kр.п. ·Iн.дв ·kі
где Kзап . — коэффициент запаса, который учитывает колебания напряжения, Kзап . = 1,1 ;
kр.у — коэффициент, который учитывает неточность вставки по току срабатывания электромагнитного расцепителя автоматического выключателя , Kр.у = 1,2 ;
kр.п. — коэффициент, который учитывает возможное отклонение пускового тока от его номинального, kр.п. = 1,2 ;
K і — каталожная кратность пускового тока электродвигателя;
Iн.дв — номинальный ток двигателя , А.
Iу.е = 14 · Iн.рос = 14 · 12,5 = 175А
З таблицы электродвигателей находим K і = 7,0 для электродвигателя АИР112М4У2.
Подставляем в условие и определяем
Условие выполнилось, следовательно, автоматический выключатель не сработает при запуске двигателя.
— номинальный ток автоматического выключателя должен быть меньше предельно допустимого тока кабеля которым питается электродвигатель. Например: подключение сделано кабелем АВРГ (3х2,5) который имеет допустимый ток Iдоп =27А. Для водного автомата для защиты электродвигателя условие выполняется потому, что Iдоп =27А > Ін. = 25А .
В этой статье вы узнали как правильно, используя условия выбора правильно подобрать автоматический выключатель для защиты электродвигателя.
Выбор ВА47-29 и настройка РТИ в схеме управления асинхронным электродвигателем (2009)
Как подобрать и настроить защитную аппаратуру асинхронного двигателя?
В цепи обмоток электромотора, помимо короткого замыкания, возможен режим перегрузки, возникающий из-за:
- обрыва фазы;
- повышения/снижения напряжения;
- возрастания момента на валу свыше 1,1 Мном.
Ток двигателя при перегрузке увеличивается на 20. 50%, нагрев обмоток — пропорционально квадрату тока, соответственно на 40. 125%. Если перегрузка кратковременна 2-3 минуты, ею можно пренебречь. Но если более продолжительна, то возрастает вероятность пробоя изоляции обмоток двигателя. Слежением за величиной перегрузки и отключением двигателя занимается тепловое реле. Время его отключения должно быть тем меньше, чем больше ток перегрузки, и пропорционально квадрату отношения величины рабочего тока к току перегрузки.
Рассмотрим типовую схему включения асинхронного электродвигателя. В нее входят: трехполюсный автоматический выключатель, контактор серии КМИ, кнопочная станция, тепловое реле серии РТИ, электродвигатель (см. Рис. 1).
Рисунок 1. Типовая схема включения асинхронного электродвигателя
При выборе автоматического выключателя необходимо учитывать пропускание пускового тока двигателя:
Для двигателя 4А100S2У3 (Рном = 4,0 кВт, пном=2880 об/ мин, КПД=86,5%, CoS9=0,89, Iпуск/Iном=7,5 номинальный ток Іном=Рном/ 380.Cos9 КПД=4000/1, 73.380.0, 89Ю,865=7,9А, пусковой ток Іпуск=7,5.Іном=59,3А) при условии, что пусковой ток 59,3А меньше нижней границы диапазона тока срабатывания ЭМ расцепителя, выбираем ВА47-29 с характеристиками В20, С13 или D8.
Сопоставим выбранные выключатели. По загрузке В20/С13/ D8 соотносятся, как 0,4/0,62/1; В20 загружен на 40%, С13 — на 62%, D8 — на 99%. По тепловыделению в20/С13/ D8 соотносятся как 0,16/0,38/0,98. Мощность тепловых потерь на В20 составляет 1,7 Вт, на С13 — 4 Вт, на D8 — 10,3 Вт. Что выбрать? Вариант с меньшим тепловыделением и загрузкой!
Приведем еще пример расчета и выбора вводного автоматического выключателя ВА47-29 для электродвигателей серии АОП2 (с повышенным пусковым моментом).
При определении пускового тока принимаем его кратность для двигателей 1500 об/мин равной 7,5; для 1000 об/мин — 7, и для 750 об/мин — 6. Расчетный номинальный ток вводного автомата определяем делением пускового тока на кратность нижней границы диапазона настройки расцепителя. Для характеристик: В-3, для С — 5, для D — 10. Второе условие выбора вводного автомата: номинальный ток автомата должен быть больше номинального тока двигателя.
В результате, например, для двигателя АОП2-42-4 мощностью 5,5 кВт и частотой вращения 1440 об/мин (номинальный ток 11,7 А, пусковой ток 88 А), наиболее подходящим с точки зрения надежности будет вариант автоматического выключателя с характеристикой В 32, а не D13 или С18!
Настройка уставки теплового реле
Проведение пуско-наладочных работ предусматривает настройку тепловой защиты. Наиболее верно проводить настройку уставки теплового реле «на горячем двигателе», при установившемся температурном режиме работающего двигателя и теплового реле.
Настройка теплового реле проводится поэтапно. Перед пуском двигателя уставку ставят на максимальное значение. При установившемся температурном режиме, спустя 25. 40 минут непрерывной работы при номинальном рабочем режиме, уставку плавно уменьшают до срабатывания теплового реле и отключения электродвигателя.
Слегка «загрубив» уставку, повторно запускают двигатель и проверяют правильность настройки. Если реле опять отключит двигатель, то уставку увеличивают, если не отключит — то, уменьшая уставку, снова проверяют срабатывание теплового реле во второй, и в третий раз.
Оптимальным считается вариант настройки при совпадении теплового режима окружающей среды щитового оборудования и двигателя. Например, при размещении в одном помещении.
Положительным фактором является встроенная термокомпенсация теплового реле. Но если ее нет, необходимо, в зависимости от температуры окружающей среды (лето/зима — день/ночь), проводить корректировку уставки.
Тепловые реле серии РТИ торговой марки IEK имеют термокомпенсацию. Это рычаг между эксцентриком уставки и механизмом переключения контактов, который изготовлен из биметалла.
Более сложный вариант настройки тепловой защиты двигателя — при размещении пускозащитной аппаратуры в щитовом помещении, а двигателя — на открытом воздухе. Именно в летний период при максимальной дневной температуре повышается вероятность перегрузки двигателя. В таких случаях применяют встроенную температурную защиту двигателя. В статорной обмотке двигателя (при его изготовлении) размещают позисторы (резисторы с нелинейной зависимостью сопротивления от температуры), автоматически контролирующие температурный режим обмоток и отключающих питание двигателя при достижении максимально-допустимой температуры обмотки.
Гарантией наиболее верного способа защиты от перегрузки будет правильный выбор мощности приводного двигателя. И если нормы проектирования СССР рекомендовали выбирать двигатель с загрузкой 0,75.0,9 (то есть запас составлял 10-25%), то при выборе мощности двигателя с загрузкой на половину номинала проблем с тепловой защитой будет гораздо меньше.
Итак, подведем итоги:
- Защита силовой цепи асинхронных электродвигателей автоматическими выключателями серии ВА47-29 с заменой характеристики электромагнитного расцепителя D на В или С, снижает тепловыделение, и, соответственно, температуру в щите управления;
- Анализ характеристик автоматических выключателей для питания электродвигателей серии АОП2 показывает, что возможна замена автоматического выключателя ВА47-29 с характеристикой D для электродвигателей мощностью до 13 кВт на В, и до 22 кВт на автоматический выключатель ВА47-29 с характеристикой С;
- Настройку тепловой защиты двигателей необходимо проводить «на горячем двигателе» в установившемся температурном режиме двигателя и теплового реле, подбирая уставку последнего согласно вышеприведенной методике.